

Endoscopic diagnosis and management of nonvariceal upper gastrointestinal hemorrhage (NVUGIH): European Society of Gastrointestinal Endoscopy (ESGE) Guideline – Update 2021

Authors

Ian M. Gralnek^{1,2}, Adrian J. Stanley³, A. John Morris³, Marine Camus⁴, James Lau⁵, Angel Lanas⁶, Stig B. Laursen⁷, Franco Radaelli⁸, Ioannis S. Papanikolaou⁹, Tiago Cúrdia Gonçalves^{10,11,12}, Mario Dinis-Ribeiro^{13,14}, Halim Awadie¹, Georg Braun¹⁵, Nicolette de Groot¹⁶, Marianne Udd¹⁷, Andres Sanchez-Yague^{18,19}, Ziv Neeman^{2,20}, Jeanin E. van Hooft²¹

Institutions

- Institute of Gastroenterology and Hepatology, Emek Medical Center, Afula, Israel
- 2 Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- 3 Department of Gastroenterology, Glasgow Royal Infirmary, Glasgow, UK
- 4 Sorbonne University, Endoscopic Unit, Saint Antoine Hospital Assistance Publique Hopitaux de Paris, Paris, France
- 5 Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- 6 Digestive Disease Services, University Clinic Hospital, University of Zaragoza, IIS Aragón (CIBERehd), Spain
- 7 Department of Gastroenterology, Odense University Hospital, Odense, Denmark
- 8 Department of Gastroenterology, Valduce Hospital, Como, Italy
- 9 Hepatogastroenterology Unit, Second Department of Internal Medicine – Propaedeutic, Medical School, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
- 10 Gastroenterology Department, Hospital da Senhora da Oliveira, Guimarães, Portugal
- 11 School of Medicine, University of Minho, Braga/ Guimarães, Portugal
- 12 ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- 13 Center for Research in Health Technologies and Information Systems (CINTESIS), Faculty of Medicine, Porto, Portugal
- 14 Gastroenterology Department, Portuguese Oncology Institute of Porto, Portugal
- 15 Medizinische Klinik 3, Universitätsklinikum Augsburg, Augsburg, Germany.
- 16 Red Cross Hospital Beverwijk, Beverwijk, The Netherlands

- 17 Gastroenterological Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- 18 Gastroenterology Unit, Hospital Costa del Sol, Marbella, Spain
- 19 Gastroenterology Department, Vithas Xanit International Hospital, Benalmadena, Spain
- 20 Diagnostic Imaging and Nuclear Medicine Institute, Emek Medical Center, Afula, Israel
- 21 Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands

published online 10.2.2021

Bibliography

Endoscopy 2021; 53: 300–332 DOI 10.1055/a-1369-5274 ISSN 0013-726X

© 2021. European Society of Gastrointestinal Endoscopy All rights reserved.

This article ist published by Thieme. Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany

Supplementary material Supplementary material is available under https://doi.org/10.1055/a-1369-5274

Corresponding author

Ian M. Gralnek, MD MSHS, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Institute of Gastroenterology and Hepatology, Emek Medical Center, Afula, Israel 18101
ian_qr@clalit.org.il

MAIN RECOMMENDATIONS

1 ESGE recommends in patients with acute upper gastrointestinal hemorrhage (UGIH) the use of the Glasgow– Blatchford Score (GBS) for pre-endoscopy risk stratification. Patients with GBS ≤ 1 are at very low risk of rebleeding, mortality within 30 days, or needing hospital-based intervention and can be safely managed as outpatients with outpatient endoscopy.

Strong recommendation, moderate quality evidence.

2 ESGE recommends that in patients with acute UGIH who are taking low-dose aspirin as monotherapy for secondary cardiovascular prophylaxis, aspirin should not be interrupted. If for any reason it is interrupted, aspirin should be restarted as soon as possible, preferably within 3–5 days. Strong recommendation, moderate quality evidence.

3 ESGE recommends that following hemodynamic resuscitation, early (≤24 hours) upper gastrointestinal (GI) endoscopy should be performed.

Strong recommendation, high quality evidence.

4 ESGE does not recommend urgent (≤12 hours) upper GI endoscopy since as compared to early endoscopy, patient outcomes are not improved.

Strong recommendation, high quality evidence.

5 ESGE recommends for patients with actively bleeding ulcers (Fla, Flb), combination therapy using epinephrine injection plus a second hemostasis modality (contact thermal or mechanical therapy).

Strong recommendation, high quality evidence.

6 ESGE recommends for patients with an ulcer with a non-bleeding visible vessel (FIIa), contact or noncontact thermal therapy, mechanical therapy, or injection of a sclerosing agent, each as monotherapy or in combination with epine-phrine injection.

Strong recommendation, high quality evidence.

7 ESGE suggests that in patients with persistent bleeding refractory to standard hemostasis modalities, the use of a topical hemostatic spray/powder or cap-mounted clip should be considered.

Weak recommendation, low quality evidence.

8 ESGE recommends that for patients with clinical evidence of recurrent peptic ulcer hemorrhage, use of a cap-mounted clip should be considered. In the case of failure of this second attempt at endoscopic hemostasis, transcatheter angiographic embolization (TAE) should be considered. Surgery is indicated when TAE is not locally available or after failed TAE.

Strong recommendation, moderate quality evidence.

- **9** ESGE recommends high dose proton pump inhibitor (PPI) therapy for patients who receive endoscopic hemostasis and for patients with FIIb ulcer stigmata (adherent clot) not treated endoscopically.
- (a) PPI therapy should be administered as an intravenous bolus followed by continuous infusion (e.g., 80 mg then 8 mg/hour) for 72 hours post endoscopy.
- **(b)** High dose PPI therapies given as intravenous bolus dosing (twice-daily) or in oral formulation (twice-daily) can be considered as alternative regimens.

Strong recommendation, high quality evidence.

10 ESGE recommends that in patients who require ongoing anticoagulation therapy following acute NVUGIH (e.g., peptic ulcer hemorrhage), anticoagulation should be resumed as soon as the bleeding has been controlled, preferably within or soon after 7 days of the bleeding event, based on thromboembolic risk. The rapid onset of action of direct oral anticoagulants (DOACS), as compared to vitamin K antagonists (VKAs), must be considered in this context. Strong recommendation, low quality evidence.

SOURCE AND SCOPE

This Guideline is an official statement from the European Society of Gastrointestinal Endoscopy (ESGE). It is an update of the previously published 2015 ESGE Clinical Guideline addressing the role of gastrointestinal endoscopy in the diagnosis and management of acute nonvariceal upper gastrointestinal hemorrhage (NVUGIH). The evidence statements and recommendations specifically pertaining to endoscopic hemostasis therapies are limited to peptic ulcer hemorrhage. Endoscopic hemostasis therapy recommendations for nonulcer NVUGIH etiologies, can be found in the 2015 ESGE Guideline.

Introduction

The most common causes of acute upper gastrointestinal hemorrhage (UGIH) are nonvariceal. These include gastric and duodenal peptic ulcers, mucosal erosive disease of the esophagus/stomach/duodenum, malignancy, Mallory–Weiss syndrome, Dieulafoy lesion, "other" diagnosis, or no identifiable cause [1]. This ESGE Guideline focuses on the pre-endoscopic, endoscopic, and post-endoscopic management of patients presenting with acute nonvariceal upper gastrointestinal hemorrhage (NVUGIH), specifically peptic ulcer hemorrhage.

ABBREVIATIONS			
APA	antiplatelet agent	NGT	nasogastric tube
APC	argon plasma coagulation	NNT	number needed to treat
ASA	American Society of Anesthesiologists	NVUGIH	nonvariceal upper gastrointestinal
AUROC	area under receiver operating characteristic		hemorrhage
DAPT	dual antiplatelet therapy	OR	odds ratio
CHADS2	congestive heart failure, hypertension, age	OTS	over-the-scope
	≥75 years, diabetes mellitus, and previous	PCC	prothrombin complex concentrate
	stroke or transient ischemic attack [risk score]	PCI	percutaneous coronary intervention
CI	confidence interval	PICO	patients, interventions, controls, outcomes
DOAC	direct oral anticoagulant	PNED	Progetto Nazionale Emorragia Digestive
ESGE	European Society of Gastrointestinal	PPI	proton pump inhibitor
	Endoscopy	PUB	peptic ulcer bleeding
FFP	fresh frozen plasma	RBC	red blood cell
GBS	Glasgow–Blatchford Score	RCT	randomized controlled trial
GI	gastrointestinal	RD	risk difference
GRADE	Grading of Recommendations Assessment,	RR	relative risk or risk ratio
	Development and Evaluation	TAE	transcatheter angiographic embolization
HR	hazard ratio	TTS	through-the-scope
ICU	intensive care unit	TXA	tranexamic acid
INR	international normalized ratio	UGIH	upper gastrointestinal hemorrhage
IRR	incident rate ratio	VKA	vitamin K antagonist
NBVV	nonbleeding visible vessel		

Methods

ESGE commissioned this Guideline (ESGE Guideline Committee chair, J.V.H.) and appointed a guideline leader (I.M.G.). The guideline leader established four task forces based on the statements of the previous 2015 Guideline [2], each with its own leader (M.C., A.J.S., J.M., J.L.).

Key questions (Table 1s, see online-only in Supplementary material) were prepared by the coordinating team (I.M.G., M. C., A.S., J.M., J.L.) according to the PICO format (patients, interventions, controls, outcomes) and divided amongst the four task forces. Given this is an update of the 2015 ESGE Clinical Guideline on NVUGIH, each task force performed a structured systematic literature search using key words (Table 2s) in English-language articles limited from January 1, 2014 to January 31, 2020, in Ovid MEDLINE, Embase, Google Scholar, and the Cochrane Database of Systematic Reviews. Additional topic-specific searches on timing of endoscopy and role of capmounted clips for hemostasis in peptic ulcer hemorrhage were conducted up to August 31, 2020. The hierarchy of studies included in this evidence-based quideline was, in decreasing order of evidence level, published systematic reviews/metaanalyses, randomized controlled trials (RCTs), prospective and retrospective observational studies, and case series. New evidence on each key question was summarized in evidence tables (Table 3s), using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system [3]. Grading of the evidence depends on the balance between the benefits and risk or burden of any health intervention. Further details on ESGE guideline development have been previously reported [4].

The results of the literature search and answers to PICO questions were presented to all quideline group members during two online face-to-face meetings conducted on June 27 and 28, 2020. Subsequently, drafts were made by each task force leader and distributed between the task force members for revision and online discussion. In September 2020, a draft prepared by I.M.G. and the four task force leaders was sent to all quideline group members. After agreement of all members was obtained, the manuscript was reviewed by two independent external reviewers. The manuscript was then sent for further comments to the 49 ESGE member societies and individual members. It was then submitted to the journal Endoscopy for publication. The final revised manuscript was agreed upon by all the authors. This ESGE Guideline was issued in 2021 and will be considered for update in 2025. Any interim updates will be noted on the ESGE website: http://www.esge.com/esge-guidelines.html.

Evidence statements and Recommendations

Evidence statements and Recommendations are grouped according to the different task force topics: pre-endoscopy management (task forces 1 and 2), intraendoscopy management (task force 3), and postendoscopy management (task force 4). Each statement is followed by the strength of evidence based on GRADE and the discussion of the evidence that occurred during the two 3-hour online face-to-face meetings. > Table 1 summarizes all recommendations in this updated guideline.

▶ **Table 1** Summary of Guideline statements and recommendations.

Pre-endoscopy management

Initial patient evaluation and hemodynamic resuscitation

ESGE recommends immediate assessment of hemodynamic status in patients who present with acute upper gastrointestinal hemorrhage (UGIH), with prompt intravascular volume replacement initially using crystalloid fluids if hemodynamic instability exists.

Strong recommendation, low quality evidence.

Red blood cell (RBC) transfusion strategy

- 2 ESGE recommends, in hemodynamically stable patients with acute UGIH and no history of cardiovascular disease, a restrictive RBC transfusion strategy with a hemoglobin threshold of ≤7 g/dL prompting RBC transfusion. A post-transfusion target hemoglobin concentration of 7–9 g/dL is desired.
 - Strong recommendation, moderate quality evidence.
- 3 ESGE recommends in hemodynamically stable patients with acute UGIH and a history of acute or chronic cardiovascular disease, a more liberal RBC transfusion strategy with a hemoglobin threshold of ≤8 g/dL prompting RBC transfusion. A post transfusion target hemoglobin concentration of ≥10 g/dL is desired.

 Strong recommendation, low quality evidence.

Patient risk stratification

4 ESGE recommends in patients with acute UGIH the use of the Glasgow–Blatchford Score (GBS) for pre-endoscopy risk stratification. Patients with GBS ≤ 1 are at very low risk of rebleeding, mortality within 30 days, or needing hospital-based intervention and can be safely managed as outpatients with outpatient endoscopy.

Strong recommendation, moderate quality evidence.

Management of antithrombotic agents (antiplatelet agents and anticoagulants)

- 5 ESGE recommends that in patients with acute UGIH who are taking low dose aspirin as monotherapy for primary cardiovascular prophylaxis, aspirin should be temporarily interrupted. Aspirin can be re-started after careful re-evaluation of its clinical indication.

 Strong recommendation, low quality evidence.
- 6 ESGE recommends that in patients with acute UGIH who are taking low dose aspirin as monotherapy for secondary cardiovascular prophylaxis, aspirin should not be interrupted. If for any reason it is interrupted, aspirin should be re-started as soon as possible, preferably within 3–5 days.
 - Strong recommendation, moderate quality evidence.
- ESGE recommends that in patients with acute UGIH who are taking dual antiplatelet therapy (DAPT) for secondary cardiovascular prophylaxis, aspirin should not be interrupted. The second antiplatelet agent should be interrupted, but re-started as soon as possible, preferably within 5 days. Cardiology consultation is suggested.

 Strong recommendation, low quality evidence.
- 8 ESGE does not recommend routine platelet transfusion for patients with acute NVUGIH who are taking antiplatelet agents.
 Strong recommendation, low quality evidence.
- 9 ESGE does not recommend the use of tranexamic acid in patients with acute NVUGIH. Strong recommendation, high quality evidence.
- ESGE recommends that in patients with acute UGIH taking vitamin K antagonists (VKAs), that the anticoagulant be withheld. Strong recommendation, low quality evidence
- ESGE recommends that in patients with acute UGIH taking vitamin K antagonists (VKAs) who have hemodynamic instability, low dose vitamin K supplemented with intravenous prothrombin complex concentrate (PCC), or fresh frozen plasma (FFP) if PCC is not available, should be administered. However, this should not delay endoscopy or if required, endoscopic hemostasis.

 Strong recommendation, low quality evidence.
- ESGE recommends that in patients with acute UGIH taking direct oral anticoagulants (DOAC), the anticoagulant should be withheld and endoscopy not delayed. In patients with severe ongoing bleeding, use of a DOAC reversal agent or intravenous PCC should be considered. Strong recommendation, low quality evidence.

Proton pump inhibitor (PPI) therapy

ESGE suggests that pre-endoscopy high dose intravenous proton pump inhibitor (PPI) therapy be considered in patients presenting with acute UGIH, to downstage endoscopic stigmata and thereby reduce the need for endoscopic therapy; however, this should not delay early endoscopy.

Weak recommendation, high quality evidence.

10

11

Strong recommendation, moderate quality evidence.

Strong recommendation, low quality evidence.

Somatostatin and somatostatin analogues ESGE does not recommend the use of somatostatin, or its analogue octreotide, in patients with NVUGIH. Strong recommendation, low quality evidence. Nasogastric/orogastric tube aspiration and lavage ESGE does not recommend the routine use of nasogastric or orogastric aspiration/lavage in patients presenting with acute UGIH. Strong recommendation, moderate quality evidence. Endotracheal intubation ESGE does not recommend routine prophylactic endotracheal intubation for airway protection prior to upper endoscopy in patients with 16 acute UGIH. Strong recommendation, high quality evidence. ESGE recommends prophylactic endotracheal intubation for airway protection prior to upper endoscopy only in selected patients with acute 17 UGIH (i.e., those with ongoing active hematemesis, agitation, or encephalopathy with inability to adequately control the airway). Strong recommendation, low quality evidence. Prokinetic medications ESGE recommends pre-endoscopy administration of intravenous erythromycin in selected patients with clinically severe or ongoing active 18 Strong recommendation, high quality evidence. **Endoscopic management** Timing of upper GI endoscopy ESGE recommends adopting the following definitions regarding the timing of upper GI endoscopy in acute UGIH relative to the time of patient presentation: urgent ≤ 12 hours, early ≤ 24 hours, and delayed > 24 hours. Strong recommendation, moderate quality evidence. 2 ESGE recommends that following hemodynamic resuscitation, early (\leq 24 hours) upper GI endoscopy should be performed. Strong recommendation, high quality evidence. ESGE does not recommend urgent (≤ 12 hours) upper GI endoscopy since as compared to early endoscopy, patient outcomes are not 3 Strong recommendation, high quality evidence. ESGE does not recommend emergent (≤6 hours) upper GI endoscopy since this may be associated with worse patient outcomes. 4 Strong recommendation, moderate quality evidence. 5 ESGE recommends that the use of antiplatelet agents, anticoagulants, or a predetermined international normalized ratio (INR) cutoff level, should not be used to define or guide the timing of upper GI endoscopy in patients with acute UGIH. Strong recommendation, low quality evidence. On-call GI endoscopy resources ESGE recommends the availability of both an on-call GI endoscopist proficient in endoscopic hemostasis and on-call nursing staff with technical expertise in the use of endoscopic devices, to allow performance of endoscopy on a 24/7 basis. Strong recommendation, low quality evidence. Endoscopic diagnosis ESGE recommends the Forrest (F) classification be used in all patients with peptic ulcer hemorrhage to differentiate low risk and high risk endoscopic stigmata. Strong recommendation, high quality evidence. ESGE recommends that peptic ulcers with spurting or oozing bleeding (Fla and Flb respectively) or with a nonbleeding visible vessel (FlIa) 8 receive endoscopic hemostasis because these lesions are at high risk for persistent bleeding or recurrent bleeding. Strong recommendation, high quality evidence. ESGE suggests that peptic ulcers with an adherent clot (FIIb) be considered for endoscopic clot removal. Once the clot is removed, any 9 identified underlying active bleeding (FIa or FIb) or nonbleeding visible vessel (FIIa) should receive endoscopic hemostasis. Weak recommendation, moderate quality evidence.

ESGE does not recommend endoscopic hemostasis in patients with peptic ulcers having a flat pigmented spot (FIIc) or clean base (FIII), as these stigmata have a low risk of adverse outcomes. In selected clinical settings these patients may have expedited hospital discharge.

ESGE does not recommend the routine use of Doppler endoscopic probe in the evaluation of endoscopic stigmata of peptic ulcer bleeding.

12 ESGE does not recommend the routine use of capsule endoscopy technology in the evaluation of acute UGIH. Strong recommendation, low quality evidence. Endoscopic therapy for peptic ulcer hemorrhage Fla. Flb (active bleedina) 13 (a) ESGE recommends for patients with actively bleeding ulcers (Fla, Flb), combination therapy using epinephrine injection plus a second hemostasis modality (contact thermal or mechanical therapy). Strong recommendation, high quality evidence. (b) ESGE suggests that in selected actively bleeding ulcers (Fla,Flb), specifically those > 2 cm in size, with a large visible vessel > 2 mm, or located in a high-risk vascular area (e. q., gastroduodenal, left gastric arteries), or in excavated/fibrotic ulcers, endoscopic hemostasis using a cap-mounted clip should be considered as first-line therapy. Weak recommendation, low quality evidence. 14 FIIa (nonbleeding visible vessel) ESGE recommends for patients with an ulcer with a nonbleeding visible vessel (FIIa), contact or noncontact thermal therapy, mechanical therapy, or injection of a sclerosing agent, each as monotherapy or in combination with epinephrine injection. Strong recommendation, high quality evidence. 15 ESGE does not recommend that epinephrine injection be used as endoscopic monotherapy. If used, it should be combined with a second endoscopic hemostasis modality. Strong recommendation, high quality evidence. 16 ESGE recommends that persistent bleeding be defined as ongoing active bleeding refractory to standard hemostasis modalities. Strong recommendation, high quality evidence. ESGE suggests that in patients with persistent bleeding refractory to standard hemostasis modalities, the use of a topical hemostatic 17 spray/powder or cap-mounted clip should be considered. Weak recommendation, low quality evidence. 18 ESGE recommends that in patients with persistent bleeding refractory to all modalities of endoscopic hemostasis, transcatheter angiographic embolization (TAE) should be considered. Surgery is indicated when TAE is not locally available or after failed TAE. Strong recommendation, moderate quality evidence. 19 ESGE suggests considering the use of hemostatic forceps as an alternative endoscopic hemostasis option in peptic ulcer hemorrhage. Weak recommendation, moderate quality evidence. Post-endoscopy management Proton pump inhibitor (PPI) therapy ESGE recommends high dose PPI therapy for patients who receive endoscopic hemostasis and for patients with FIIb ulcer stigmata (adherent clot) not treated endoscopically. (a) PPI therapy should be administered as an intravenous bolus followed by continuous infusion (e.g., 80 mg then 8 mg/hour) for 72 hours post endoscopy. (b) High dose PPI therapies given as intravenous bolus dosing (twice-daily) or in oral formulation (twice-daily) can be considered as alternative regimens. Strong recommendation, high quality evidence. Second-look endoscopy ESGE does not recommend routine second-look endoscopy as part of the management of NVUGIH. Strong recommendation, high quality evidence. Management of recurrent bleeding ESGE recommends that recurrent bleeding be defined as bleeding following initial successful endoscopic hemostasis. Strong recommendation, high quality evidence. ESGE recommends that patients with clinical evidence of recurrent bleeding should receive repeat upper endoscopy with hemostasis if indicated. Strong recommendation, high quality evidence. ESGE recommends that in the case of failure of this second attempt at endoscopic hemostasis, transcatheter angiographic embolization (TAE) should be considered. Surgery is indicated when TAE is not locally available or after failed TAE.

Strong recommendation, high quality evidence.

ESGE recommends that for patients with clinical evidence of recurrent peptic ulcer hemorrhage, use of a cap-mounted clip should be considered. In the case of failure of this second attempt at endoscopic hemostasis, transcatheter angiographic embolization (TAE) should be considered. Surgery is indicated when TAE is not locally available or after failed TAE. Strong recommendation, moderate quality evidence. Helicobacter pylori ESGE recommends, in patients with NVUGIH secondary to peptic ulcer, investigation for the presence of Helicobacter pylori in the acute setting (at index endoscopy) with initiation of appropriate antibiotic therapy when H. pylori is detected. Strong recommendation, high quality evidence. ESGE recommends re-testing for *H. pylori* in those patients with a negative test at index endoscopy. Strong recommendation, high quality evidence. ESGE recommends documentation of successful *H. pylori* eradication. 9 Strong recommendation, high quality evidence. Dual antiplatelet therapy and PPI co-therapy 10 ESGE recommends that in patients who have had acute NVUGIH and require ongoing dual antiplatelet therapy (DAPT), PPI should be given as co-therapy. Strong recommendation, moderate quality evidence. Re-starting anticoagulation therapy (vitamin K antagonists [VKAs], direct oral anticoagulants [DOACs]) ESGE recommends that in patients who require ongoing anticoagulation therapy following acute NVUGIH (e. q., peptic ulcer hemorrhage), anticoagulation should be resumed as soon as the bleeding has been controlled, preferably within or soon after 7 days of the bleeding event, based on thromboembolic risk. The rapid onset of action of direct oral anticoagulants (DOACS), as compared to vitamin K antagonists (VKAs),

ESGE recommends PPIs for gastroduodenal prophylaxis in patients requiring ongoing anticoagulation and with a history of NVUGIH.

Pre-endoscopy management

Initial patient evaluation and hemodynamic resuscitation

must be considered in this context.

Strong recommendation, low quality evidence.

Strong recommendation, low quality evidence.

RECOMMENDATION

12

ESGE recommends immediate assessment of hemodynamic status in patients who present with acute upper gastrointestinal hemorrhage (UGIH), with prompt intravascular volume replacement initially using crystalloid fluids if hemodynamic instability exists.

Strong recommendation, low quality evidence.

The goals of hemodynamic resuscitation are to correct intravascular hypovolemia, restore adequate tissue perfusion, and prevent multiorgan failure. Early intensive hemodynamic resuscitation of patients with acute UGIH has been shown to significantly decrease mortality [5]. However, uncertainty remains regarding the optimal rate of fluid resuscitation (aggressive vs. restrictive) [6-9]. A small RCT, including 51 participants presenting with acute UGIH and hemorrhagic shock, suggested that as compared to a conventional fluid resuscitation strategy, a restrictive fluid resuscitation regimen combined with an inotropic pharmacologic agent (dopamine hydrochloride) led to fewer adverse events [6]. A meta-analysis of 11 studies, including 3 studies specifically on UGIH, reported significant reductions in mortality (risk ratio [RR] 0.67, 95%CI 0.56-0.81; P<0.001), postoperative complications (multiorgan dysfunction syndrome, RR 0.37, 95%CI 0.21-0.66, P < 0.001, and acute respiratory distress syndrome, RR 0.35, 95%CI 0.21–0.6; P<0.001) in those patients receiving limited fluid resuscitation [8]. However, most of the patients in this meta-analysis suffered from trauma, and it is unclear whether the results can be extrapolated to patients with acute UGIH.

Moreover, there is ongoing uncertainty regarding the ideal crystalloid fluid type to be used in hemodynamic resuscitation for acute UGIH, either saline 0.9% sodium chloride or balanced crystalloids [10–12]. The selection of fluid type in critically ill patients requires careful consideration, based on safety, effects on patient outcomes, and costs. In both a large RCT and a meta-analysis of critically ill patients (most without UGIH), as compared to saline, use of a balanced crystalloid solution (e.g., lactated Ringer's solution) was shown to reduce both mortality and major adverse renal events [11,12]. However, there remains a lack of evidence for the subgroup of patients presenting with acute UGIH.

Red blood cell (RBC) transfusion strategy

RECOMMENDATION

ESGE recommends, in hemodynamically stable patients with acute UGIH and no history of cardiovascular disease, a restrictive red blood cell (RBC) transfusion strategy with a hemoglobin threshold of $\leq 7 \, \text{g/dL}$ prompting RBC transfusion. A post-transfusion target hemoglobin concentration of $7-9 \, \text{g/dL}$ is desired.

Strong recommendation, moderate quality evidence.

RECOMMENDATION

ESGE recommends, in hemodynamically stable patients with acute UGIH and a history of acute or chronic cardio-vascular disease, a more liberal RBC transfusion strategy with a hemoglobin threshold of $\leq 8 \, \text{g/dL}$ prompting RBC transfusion. A post-transfusion target hemoglobin concentration of $\geq 10 \, \text{g/dL}$ is desired.

Strong recommendation, low quality evidence.

A restrictive red blood cell (RBC) transfusion strategy is considered standard of care in non-massive, acute UGIH [13–15]. A meta-analysis of five RCTs comprising 1965 patients with acute UGIH reported that, as compared to a liberal RBC transfusion strategy, a restrictive RBC transfusion strategy was associated with significantly lower mortality (RR 0.65, 95%CI 0.44–0.97) and reduced rebleeding (RR 0.58, 95%CI 0.40–0.84) [16]. This was true for patients with both variceal or nonvariceal bleeding. However, the hemoglobin thresholds that prompted RBC transfusion differed between RCTs and most of the data used in the meta-analysis came from two large RCTs, which could affect generalizability [13, 14].

A meta-analysis of 31 RCTs comprising 12 587 anemic patients with a variety of underlying comorbidities found that a restrictive RBC transfusion strategy did not adversely affect patient outcomes. In-hospital mortality was lower with a restrictive strategy, but 30-day mortality was not significantly different (RR 0.97, 95%CI 0.81–1.16) [17]. The most common hemoglobin thresholds used to prompt RBC transfusion were ≤ 7 g/dL or ≤ 8 g/dL for the restrictive RBC transfusion strategy and ≤ 9 g/dL or ≤ 10 g/dL for the liberal transfusion strategy. Despite limited data, this meta-analysis concluded that a restrictive RBC transfusion strategy appeared to be safe in patients with underlying cardiovascular disease. However, there were no available data for patients with acute coronary syndrome.

In a separate meta-analysis examining the effects of a restrictive versus liberal RBC transfusion strategy on outcomes in patients with cardiovascular disease not undergoing cardiac surgery (11 RCTs including 3033 patients with cardiovascular disease), Docherty et al. found that it may not be safe to use a hemoglobin threshold of <8 g/dL to prompt RBC transfusion in patients with ongoing acute coronary syndrome or chronic cardiovascular disease [18]. The authors reported that the risk of

acute coronary syndrome in patients managed with a restrictive RBC transfusion strategy was significantly increased (RR 1.78, 95%CI 1.18–2.70, P=0.01). The authors concluded that until adequately powered, high quality RCTs become available for patients with cardiovascular disease, a more liberal hemoglobin threshold (>8g/dL) to prompt RBC transfusion should be used for patients with both acute or chronic cardiovascular disease.

Patient risk stratification

RECOMMENDATION

ESGE recommends, in patients with acute UGIH, the use of the Glasgow–Blatchford Score (GBS) for pre-endoscopy risk stratification. Patients with GBS ≤ 1 are at very low risk of rebleeding, mortality within 30 days, or needing hospital-based intervention and can be safely managed as outpatients with outpatient endoscopy.

Strong recommendation, moderate quality evidence.

Three risk stratification scores have been primarily studied in patients presenting with acute UGIH: the Glasgow-Blatchford Score (GBS), the pre-endoscopy Rockall Score, and the AIMS65 [19-21]. Risk stratification of patients presenting with acute UGIH can assist the triage of patients to in-hospital versus outof-hospital management. Our updated systematic literature search identified several recent studies that provide additional evidence supporting pre-endoscopy risk stratification and identification of low risk patients. A retrospective study of 2305 consecutive patients admitted for suspected UGIH demonstrated that a GBS ≤1 identified a significantly higher proportion of true low risk patients compared with a GBS = 0 (24.4% vs. 13.6%, P<0.001) [22]. A systematic review assessed the predictive value of pre-endoscopy risk scores for 30-day serious adverse events (the composite outcome included 30-day mortality, recurrent bleeding, and need for intervention) [23]. Overall, the predictive value of the GBS was superior (sensitivity and specificity of 0.98 and 0.16, respectively, as compared to 0.93 and 0.24, respectively, for the pre-endoscopy Rockall score, and 0.79 and 0.61, respectively, for the AIMS65). In a prospective, international cohort study including 3012 patients, Stanley et al. evaluated the accuracy of the Rockall preendoscopy and complete scores, and the AIMS65, GBS, and Progetto Nazionale Emorragia Digestive (PNED) [24]. The GBS was reported to have the highest accuracy (AUROC 0.86) for predicting need for hospital-based intervention (RBC transfusion, endoscopic treatment, arterial embolization, surgery) or death. Moreover, a GBS ≤ 1 was the optimal threshold to predict patient survival without need for hospital-based intervention, with a sensitivity of 98.6% and specificity of 34.6%. However, none of the evaluated risk scores were able to predict other outcomes with acceptable ability (AUROC≤0.80).

The sensitivity of a risk stratification score (e.g., detecting patients at high risk) is important so as not to incorrectly classify high risk patients as low risk when deciding on early hospital discharge. In contrast, risk score specificity is less crucial, since

Thieme

low specificity results in more low risk patients being admitted to hospital, but not in high risk patients being prematurely discharged. Moreover, the use of a validated risk stratification score (such as the GBS) with early discharge of low risk patients can reduce the need for endoscopy services, hospital admission, and resource utilization, without increasing patient risk. Two prospective studies found that implementation of GBS=0 as a standard for non-admission was associated with a positive clinical effect in terms of reduced rates of hospital admission (15% of all acute UGIH patients), shorter length of hospital stay (6 vs. 19 hours), and reduced resource utilization among the low risk patients [25, 26]. It should be noted that when the GBS is used to identify very low risk patients, discharged patients should be informed of the limited risk of recurrent bleeding and should be advised to maintain contact with the discharging hospital.

Pre-endoscopy management of antithrombotic agents (antiplatelet agents and anticoagulants)

RECOMMENDATION

ESGE recommends that in patients with acute UGIH who are taking low dose aspirin as monotherapy for primary cardiovascular prophylaxis, aspirin should be temporarily interrupted. Aspirin can be restarted after careful re-evaluation of its clinical indication.

Strong recommendation, low quality evidence.

RECOMMENDATION

ESGE recommends that in patients with acute UGIH who are taking low dose aspirin as monotherapy for secondary cardiovascular prophylaxis, aspirin should not be interrupted. If for any reason it is interrupted, aspirin should be restarted as soon as possible, preferably within 3–5 days.

Strong recommendation, moderate quality evidence.

RECOMMENDATION

ESGE recommends that in patients with acute UGIH who are taking dual antiplatelet therapy (DAPT) for secondary cardiovascular prophylaxis, aspirin should not be interrupted. The second antiplatelet agent should be interrupted, but restarted as soon as possible, preferably within 5 days. Cardiology consultation is suggested.

Strong recommendation, low quality evidence.

Patients with NVUGIH (e.g., peptic ulcer hemorrhage) who take antiplatelet agents face a serious clinical challenge since the risk of maintaining the antiplatelet agent to avoid thrombotic events must be balanced against the risk of persistent or recurrent bleeding. Both events are associated with increased mortality. Thus, it is important to know whether the indication

for antiplatelet therapy is for primary or secondary cardiovascular prophylaxis. Primary prophylaxis is defined as use of antiplatelet agents by individuals who are free of, but at potential risk of developing cardiovascular disease. Secondary prophylaxis is the use of antiplatelet agents to prevent a second event in individuals who have had a myocardial infarction or certain types of cerebrovascular event. The evidence here however is limited and mostly restricted to low dose aspirin monotherapy. In the only published RCT, 156 recipients of low dose aspirin for secondary cardiovascular prophylaxis who had peptic ulcer bleeding with high risk endoscopic stigmata were randomized after endoscopic therapy to receive continuous aspirin or placebo [27]. At 8-week follow-up, all-cause mortality was significantly lower in the patients randomized to aspirin than in those receiving placebo (1.3% vs. 12.9%; i.e., a difference of 11.6 percentage points, 95%CI 3.7–19.5 percentage points; hazard ratio [HR] 0.20), with the difference being attributable to cardiovascular, cerebrovascular, or gastrointestinal complications. In a retrospective analysis of 118 low dose aspirin users who had been treated for peptic ulcer bleeding and who were followed up for a median of 2 years, 47 (40%) patients stopped their aspirin [28]. Those who discontinued aspirin and those who continued aspirin had similar mortality rates (31%). However, in the subgroup of patients with cardiovascular comorbidities, those who discontinued aspirin had an almost fourfold increase in the risk of death or an acute cardiovascular event (P<0.01).

Three more recent observational studies reported similar results. One study reported on 544 patients with peptic ulcer bleeding, of whom 74 (13.6%) were taking antithrombotic agents [29]. The HR for a thrombotic event when antithrombotic agents were discontinued was 10.9 (95%CI 1.3-89.7). No significant differences in recurrent bleeding events were observed between the two groups. A similar conclusion was reported in another retrospective cohort study [30]. Using Cox regression analysis, the investigators showed that the HR for recurrent bleeding was 2.98 (95%CI 0.67-8.36) in patients who continued their antithrombotic agent(s) (85.5% aspirin). However, the HR for death or acute cardiovascular disease in those who stopped taking antithrombotic agents was 5.21 (95%CI 1.03-26.3). Lastly, Siau et al. evaluated outcomes in 118 patients with acute upper GI bleeding who had their antithrombotic therapy stopped at hospital discharge [31]. These authors reported that cessation of antithrombotic therapy was associated with increased mortality (HR 3.3, 95%CI 1.1-10.3), increased thrombotic events (HR 5.8, 95 %CI 1.3-26.4), and overall increased adverse events (HR 3.0, 95 %CI 1.3-6.7). However, there was no significant increase in post-hospital discharge bleeding rates. These observational studies appear to concur with the only available RCT on this topic [27].

The optimal timing for the resumption of aspirin and/or other antiplatelet agents in the setting of acute NVUGIH (e.g., peptic ulcer hemorrhage) has not been adequately studied. A meta-analysis reported that the time interval to develop acute coronary syndrome after antithrombotic discontinuation is estimated to be within 1 week, and to be within 2 weeks for a cerebrovascular event [32]. In the updated Asia-Pacific working group consensus on nonvariceal upper gastrointestinal

bleeding, it was recommended that in patients with peptic ulcer hemorrhage, antithrombotic agents could be restarted the same day or not be interrupted at all if endoscopy demonstrates a Forrest III (clean base) ulcer [33]. A recent retrospective cohort study, including 871 GI bleeding patients, of whom 25% had peptic ulcer hemorrhage and all of whom were taking antithrombotic medications (52.5% antiplatelet agents), showed that at long-term follow-up (mean 24.9 months), resumption of either antiplatelet or anticoagulant therapy was associated with a higher risk of rebleeding, but a lower risk of an ischemic event or death [34]. Moreover, the investigators reported that when compared to late resumption of antithrombotic therapy, early resumption (≤7 days) following the bleeding episode showed no difference in mortality, a lower rate of ischemic events (13.6% vs. 20.4%), yet a significantly higher rate of GI rebleeding (30.6 % vs. 23.1 %; P = 0.04).

After 5 days of aspirin interruption, 50% of circulating platelets are new and therefore able to produce thromboxane which plays a key role in thrombotic events [35]. Therefore, aspirin can be temporarily interrupted and resumed within a 5-day window in patients considered at high risk for recurrent bleeding. Overall, there is good evidence to maintain, or at least to only temporarily interrupt and then quickly resume aspirin therapy after aspirin interruption in patients with known cardiovascular disease who develop peptic ulcer hemorrhage.

To date, no studies have specifically investigated outcomes of the interruption and/or timing of resumption of non-aspirin antiplatelet agents in patients with peptic ulcer hemorrhage. Moreover, the data that are available are limited to the use of aspirin for secondary cardiovascular prophylaxis. Therefore, recommendations to withhold aspirin that has been prescribed for primary cardiovascular prophylaxis in patients who develop peptic ulcer hemorrhage is based solely on clinical judgment. In such patients, the risk of persistent or recurrent bleeding should outweigh the risk of a cardiovascular event. However, in a recent study of 95 patients taking low dose aspirin for primary cardiovascular prevention who developed peptic ulcer hemorrhage, 18 (18.9%) subsequently had a cardiovascular event during follow-up. This suggests that the actual cardiovascular risk and aspirin indication for these patients should be more adequately assessed before interrupting aspirin for longer periods of time [34].

No studies have evaluated the best management strategy for patients taking dual antiplatelet therapy (DAPT) who develop peptic ulcer hemorrhage. In general, patients taking DAPT have in the recent past undergone a percutaneous coronary intervention (PCI) with stent placement and are at high risk of stent thrombosis if antiplatelet agents are interrupted [36]. Therefore, in patients with a recent PCI and stent placement and NVUGIH, a cardiologist should be consulted and maintenance of both antiplatelet agents be considered if the risk of rebleeding is thought to be low. Fig. 1a, b outlines the management of antiplatelet therapy in patients with acute NVUGIH.

RECOMMENDATION

ESGE does not recommend routine platelet transfusion for patients with acute NVUGIH who are taking antiplatelet agents.

Strong recommendation, low quality evidence.

RECOMMENDATION

ESGE does not recommend the use of tranexamic acid in patients with acute NVUGIH.

Strong recommendation, high quality evidence.

There is no high quality evidence supporting the benefit of routine platelet transfusion in patients who have acute UGIH while taking antiplatelet agents. Moreover, endoscopic hemostasis appears safe in patients with thrombocytopenia [37]. Zakko et al. reported that platelet transfusion in patients with GI bleeding taking antiplatelet medication(s), and in the absence of thrombocytopenia, did not reduce rebleeding, but was associated with higher mortality [38]. However, it would appear reasonable to consider platelet transfusion in patients taking antiplatelet medication(s) and with thrombocytopenia who have severe bleeding.

Several small studies and meta-analyses [39–42] have suggested benefit from use of tranexamic acid (TXA) in GI bleeding. However, a recent international multicenter RCT (the HALT-IT study), comparing TXA versus placebo in acute GI bleeding, reported no mortality benefit from TXA. Mortality, defined as death due to bleeding within 5 days of randomization, was 4% (222 patients) in the TXA group and 4% (226) in the placebo group (RR 0.99, 95%CI 0.82–1.18). Moreover TXA was associated with a higher number of venous thromboembolic events (48 [0.8%] vs. 26 [0.4%]; RR 1.85, 95%CI 1.15–2.98) [43].

RECOMMENDATION

ESGE recommends that, in patients with acute UGIH taking vitamin K antagonists (VKAs) the anticoagulant be withheld.

Strong recommendation, low quality evidence.

RECOMMENDATION

ESGE recommends that, in patients with acute UGIH taking vitamin K antagonists (VKAs) who have hemodynamic instability, low dose vitamin K supplemented with intravenous prothrombin complex concentrate (PCC), or fresh frozen plasma (FFP) if PCC is not available, should be administered. However, this should not delay endoscopy or, if required, endoscopic hemostasis.

Strong recommendation, low quality evidence.

RECOMMENDATION

ESGE recommends that, in patients with acute UGIH taking direct oral anticoagulants (DOACs), the anticoagulant should be withheld and endoscopy not delayed. In patients with severe ongoing bleeding, use of a DOAC reversal agent or intravenous PCC should be considered. Strong recommendation, low quality evidence.

The management of patients taking anticoagulants (VKAs, DOACs) who develop acute UGIH (e.g., peptic ulcer hemorrhage) is clinically challenging since anticoagulant management must be addressed both prior to and following upper endoscopy [44]. Unfortunately, no studies have specifically addressed the optimal timing of endoscopy in patients receiving anticoagulants. Furthermore, since the pharmacokinetics and pharmacodynamic profiles of VKAs and DOACs are different, management is different. DOACs (factor Xa and thrombin inhibitors) have a rapid onset of action and a much shorter half-life than VKA, and routine tests for anticoagulant activity are lacking [45].

The anticoagulant effect of VKA is measured using the international normalized ratio (INR). Studies have shown that endoscopy outcomes in VKA-anticoagulated patients were similar in patients with normal INR compared with those with elevated INR at hospital admission, or in those where INR was corrected to a value < 2.5 prior to endoscopy [44, 46–48]. More recent observational studies provide additional supporting evidence. Nagata et al. reported that in patients with acute upper (47%) or lower GI bleeding, early endoscopy (within 24 hours) in anticoagulant users (n = 157) was not associated with an increased risk of rebleeding (13.4% vs. 15.9%, P = 0.52) or thromboembolic events (5.7% vs. 3.2%, P = 0.68) when compared to matched controls not taking anticoagulants [49]. An INR > 2.5 was seen in 22.9% of the anticoagulant users at the time of endoscopy. However rapid INR correction was associated with an increased risk of thromboembolism, as suggested in other studies [50, 51]. Another small study also suggested that the INR level did not affect rebleeding or endoscopy outcomes [52]. However, Peloquin et al. reported that in 134 patients with GI bleeding and a supratherapeutic INR of ≥ 3.5, therapeutic endoscopic intervention was less likely to be effective as the INR increased [53].

Reversal of the anticoagulant effect of VKAs in patients with acute UGIH can be achieved with low dose vitamin K, however, this takes time since the INR only starts to decrease within 2-4 hours and normalizes within 24 hours. Moreover, the anticoagulant reversal effect of vitamin K persists as compared to prothrombin complex concentrate (PCC) or fresh frozen plasma (FFP) [54]. Sin et al. reported that four-factor PCC appears to be associated with a significant thromboembolic risk; however it remains a useful agent for warfarin reversal [55]. That same study also suggested that in patients requiring reversal of warfarin anticoagulation, lack of concomitant vitamin K may contribute to "INR rebound," therefore concomitant low dose vitamin K may be appropriate in this situation. However, given the limited data, caution must be exercised when giving vitamin K since its persisting effect can impede re-coagulation efforts. Limitations of FFP include the requirement for a higher volume load to achieve a reversal effect, slower onset of action compared with PCC, and requirement for blood group typing. In addition, recent evidence suggests that use of FFP is associated with increased mortality in patients undergoing endoscopy for NVUGIH [56-58]. Three- or four-factor PCC or FFP can be used when the reversal of anticoagulation is urgent because of patient hemodynamic instability or life-threatening massive bleeding, irrespective of INR values. Recombinant factor VIIa is currently not recommended because of its high cost and higher risk of thromboembolism [59].

Patients who develop acute UGIH while taking DOACs must follow a similar protocol of early endoscopy and reversal of anticoagulation in cases of hemodynamic instability or lifethreatening bleeding. However, there are particular considerations because of DOAC's specific pharmacodynamics and the availability of antidotes which rapidly block its anticoagulation effects. It is important to know the time of the last DOAC dose, since most DOACs have an 8-12-hour half-life and their effect usually disappears within 24 hours. Hemodialysis is effective to remove dabigatran from plasma and can help to prevent rebleeding [60]. PCC has also been shown to be effective for reversal of anticoagulation in patients with acute UGIH who are taking DOACs [61, 62]. However, the best potential therapeutic options rely on the availability of DOAC reversal agents that should be used in cases of life-threatening acute UGIH. The risk of thromboembolism with use of reversal agents is a concern, but very few data are available [63-67]. Idarucizumab is a specific antidote for dabigatran and works effectively within minutes. Thromboembolism and rebound effects have been reported in 6.8% and 23% of patients, respectively [63]. Other DOAC antidotes are being investigated but are not yet on the market [66, 67].

▶ Fig. 2 outlines management of anticoagulant therapy in patients with acute NVUGIH.

Acute UGIH in a patient taking antiplatelet agent/s (APA/s)

Upper GI endoscopy demonstrates nonvariceal source of hemorrhage, e.g. peptic ulcer

High risk endoscopic stigmata diagnosed (FIa, FIb, FIIa, FIIb – active spurting/oozing bleeding, nonbleeding visible ulcer, adherent clot)

Low dose aspirin used for primary prophylaxis

- (a) Continue to withhold low dose aspirin
- (b) Resume low dose aspirin after careful re-evaluation of its clinical indication

APA* used for secondary prophylaxis (known cardiovascular disease)

- 1 Patient on low dose aspirin alone
- (a) Continue low dose aspirin without interruption
- (b) If aspirin has been interrupted, resume within 3–5 days
- (c) Second-look endoscopy should be at the discretion of the endoscopist, prior to restarting aspirin
- 2 Patient on dual antiplatelet therapy (DAPT)
- (a) Continue low dose aspirin without interruption
- (b) The second APA should be restarted as soon as possible, preferably within 5 days.
 - Cardiology consultation regarding timing of restarting second APA is suggested
- (c) Second-look endoscopy should be at the discretion of the endoscopist, prior to restarting second APA

а

Acute UGIH in a patient taking APA(s)

UGI endoscopy demonstrates nonvariceal source of hemorrhage, e.g. peptic ulcer

Low risk endoscopic stigmata diagnosed (FIIc, FIII – flat pigmented spot, clean-base ulcer)

Low dose aspirin used for primary prophylaxis

- (a) Continue to withhold low dose aspirin
- (b) Resume low dose aspirin after careful re-evaluation of its clinical indication

APA* used for secondary prophylaxis (known cardiovascular disease)

- 1 Patient on low dose aspirin alone
- (a) Continue low dose aspirin without interruption
- Patient on dual antiplatelet therapy (DAPT)
- (a) Continue DAPT without interruption

L

▶ Fig. 1 Management of antiplatelet therapy in patients with acute nonvariceal upper gastrointestinal hemorrhage (NVUGIH) with a high risk, and b low risk stigmata, diagnosed at endoscopy. *In patients using a nonaspirin antiplatelet agent (APA) as monotherapy (e.g. thienopyridine alone), low dose aspirin may be substituted for an interval period provided there is no contraindication or allergy to aspirin. Cardiology consultation is suggested for further APA recommendations. UGIH, upper gastrointestinal hemorrhage.

Acute UGIH in patient taking anticoagulation (e.g., VKA, DOAC)

- 1 Withhold anticoagulant at time of patient presentation
- 2 In patients taking VKA and with hemodynamic instability, low dose vitamin K supplemented with intravenous PCC, or FFP if PCC not available, should be administered
- 3 In patients taking DOAC and with severe ongoing bleeding, use of a DOAC reversal agent or intravenous PCC should be considered
- 4 Upper GI endoscopy and if required, endoscopic hemostasis, should not be delayed

Upper GI endoscopy demonstrates nonvariceal source of hemorrhage

- 1 Anticoagulation should be resumed as soon as the bleeding has been controlled, preferably within or soon after 7 days of the bleeding event based on thromboembolic risk
- 2 Rapid onset of action of DOAC, as compared to VKA, must be considered in this context
- 3 Use of validated scores that estimate thrombotic risk (e.g., CHA2DS2-VASc) and bleeding risk (e.g., HAS-BLED) can be used to help guide clinical decision making
- ▶ Fig. 2 Management of anticoagulants in acute nonvariceal upper gastrointestinal hemorrhage (NVUGIH) before and after upper GI endoscopy. UGIH, upper gastrointestinal hemorrhage; VKA, vitamin K antagonist; DOAC, direct oral anticoagulant; PCC, prothrombin complex concentrate; FFP, fresh frozen plasma; GI, gastrointestinal.

Pre-endoscopy proton pump inhibitor (PPI) therapy

RECOMMENDATION

ESGE suggests that pre-endoscopy high dose intravenous proton pump inhibitor (PPI) therapy be considered in patients presenting with acute UGIH, to downstage endoscopic stigmata and thereby reduce the need for endoscopic therapy; however, this should not delay early endoscopy.

Weak recommendation, high quality evidence.

In the systematic literature search (from January 2014 to January 2020) for this updated NVUGIH guideline, we were unable to identify any systematic reviews, meta-analyses, RCTs, or observational studies evaluating pre-endoscopy PPI administration in patients presenting with acute UGIH. Although preendoscopy PPI therapy significantly reduces the prevalence of high risk endoscopic stigmata in peptic ulcer hemorrhage at

the time of index endoscopy, and thereby reduces the need for endoscopic hemostasis, PPIs provide no significant impact on patient outcomes, including recurrent hemorrhage, need for surgery, or mortality [68]. In the 2015 ESGE NVUGIH guideline, initiation of high dose intravenous PPI was recommended for patients presenting with acute UGIH awaiting upper endoscopy, without delaying early endoscopy [1]. This was a strong recommendation based upon high quality evidence. However, the lack of a significant impact of pre-endoscopy PPI therapy on clinically relevant patient outcomes in acute NVUGIH has recently led to revised recommendations from several international evidence-based quideline bodies. In 2018, the Asia-Pacific working group consensus revised their earlier support for routine pre-endoscopy intravenous PPI administration in acute UGIH [33]. Since there is no proven impact on patient outcomes and costs are increased, the working group members voted to reject the indiscriminate use of pre-endoscopy intravenous PPIs in patients presenting in a stable condition with symptoms suggestive of acute UGIH. However, the working group noted that when endoscopy facilities or expertise in acute UGIH are not available within 24 hours, the downgrading of stigmata of recent hemorrhage and reducing the need for urgent endoscopy by use of intravenous PPIs could be justified. In 2019, the International Consensus Group on NVUGIH recommended that "pre-endoscopic PPI therapy may be considered to downstage the endoscopic lesion and decrease the need for endoscopic intervention but should not delay endoscopy" [15]. This was the same as their earlier recommendation in 2010 [69]. Lastly, the recently published United Kingdom consensus care bundle for early clinical management of acute UGIH did not recommend use of PPI prior to endoscopy [70].

Considering the available evidence, ESGE now "suggests" that pre-endoscopy, high dose intravenous PPI "be considered" in patients presenting with acute UGIH. This change is reflective of the lack of high level evidence for the impact of pre-endoscopy PPI on clinically relevant patient outcomes and remains consistent with other recent NVUGIH guideline recommendations.

Somatostatin and somatostatin analogues

RECOMMENDATION

ESGE does not recommend the use of somatostatin, or its analogue octreotide, in patients with NVUGIH. Strong recommendation, low quality evidence.

Somatostatin, and its analogue octreotide, inhibit both acid and pepsin secretion while also reducing gastroduodenal mucosal blood flow [71]. However, they are not recommended in NVUGIH (e.g., peptic ulcer bleeding), either before endoscopy or as an adjunctive therapy following endoscopy, since published data show little or no benefit. A recently published retrospective cohort study including 180 patients with acute NVUGIH continues to show no significant differences in outcomes between patients receiving combination therapy (PPI plus octreotide infusion) and those receiving PPI alone (hospital

and intensive care unit [ICU] median length of stay, respectively, 6.1 vs. 4.9 days, P=0.25, and 2.3 vs. 1.9 days, P=0.24; rebleeding 9% vs. 12%, P=0.63; RBC units transfused 3 vs. 2 units, P=0.43; and mortality 6.7% vs. 5.6%, P=1.00) [72].

Nasogastric/orogastric tube aspiration and lavage

RECOMMENDATION

ESGE does not recommend the routine use of nasogastric or orogastric aspiration/lavage in patients presenting with acute UGIH.

Strong recommendation, moderate quality evidence.

A recent retrospective study and a review both concluded that nasogastric tube (NGT) aspiration does not differentiate upper from lower GI bleeding in patients with melena [73, 74]. Moreover, a randomized, single-blind, noninferiority study comparing NGT placement (with aspiration and lavage) to no NGT placement (n = 140 in each arm), failed to show that NGT aspiration could accurately predict the presence of a high risk lesion requiring endoscopic therapy (39% vs. 38%, respectively) [75]. In addition, adverse events (pain, nasal bleeding, or failure of NGT placement) occurred in 34% and there were no observed differences in rebleeding rates or mortality.

Endotracheal intubation

RECOMMENDATION

ESGE does not recommend routine prophylactic endotracheal intubation for airway protection prior to upper endoscopy in patients with acute UGIH.

Strong recommendation, high quality evidence.

RECOMMENDATION

ESGE recommends prophylactic endotracheal intubation for airway protection prior to upper endoscopy only in selected patients with acute UGIH (i.e., those with ongoing active hematemesis, agitation, or encephalopathy with inability to adequately control their airway).

Strong recommendation, low quality evidence.

It has been posited that prophylactic endotracheal intubation prior to upper endoscopy in unselected patients with acute UGIH could protect the patient's airway from potential aspiration of gastric contents and prevent cardiorespiratory adverse events. However, three recent systematic reviews/meta-analyses and a small retrospective case series show that prophylactic endotracheal intubation before upper endoscopy in patients with acute UGIH may be associated with a higher risk of aspiration and pneumonia, longer hospital stays, and potentially higher mortality [76–79]. In a meta-analysis by Almashhrawi et al., the authors reported that in patients with acute UGIH who received prophylactic endotracheal intubation prior to

upper endoscopy, pneumonia within 48 hours was identified in 20 of 134 patients (14.9%) as compared with 5 of 95 patients (5.3%) not prophylactically intubated (P=0.02, OR 3.13) [78]. Despite observed trends, no significant differences were found for aspiration (P=0.11) or mortality (P=0.18). Alshamsi et al., in their meta-analysis including 10 observational studies (n = 6068 patients), reported that prophylactic endotracheal intubation was associated with a significant increase in aspiration (OR 3.85, 95%CI 1.46-10.25; P=0.01), pneumonia (OR 4.17, 95%CI 1.82–9.57; P < 0.001) and hospital length of stay (mean difference 0.86 days, 95%CI 0.13-1.59; P = 0.02) [77]. However, there was no observed effect on mortality (OR 1.92, 95% CI 0.71-5.23; P=0.20). Chaudhuri et al. included 7 observational studies (n=5662 patients) in their meta-analysis and found that prophylactic endotracheal intubation was associated with significantly higher rates of pneumonia (OR 6.58, 95% CI 4.91–8.81), longer hospital length of stay (mean difference, 0.96 days, 95%CI 0.26-1.67), and increased mortality (OR 2.59, 95 %CI 1.01-6.64) [76]. However, because of the observational design of the included studies, the data should be considered to be of low quality.

Prokinetic medications

RECOMMENDATION

ESGE recommends pre-endoscopy administration of intravenous erythromycin in selected patients with clinically severe or ongoing active UGIH.

Strong recommendation, high quality evidence.

In patients with acute UGIH, the quality of the endoscopic examination can be adversely affected by poor visibility in the upper GI tract due to blood, clots and fluids. It is reported that in 3% to 19% of UGIH cases, no obvious cause of bleeding is identified [80, 81]. This may in part be related to the presence of blood and clots impairing endoscopic visualization. Prokinetics may improve gastric mucosa visualization by inducing gastric emptying. Most studies assessing the use of pre-endoscopy prokinetics in UGIH have used erythromycin. Insufficient data were found to make recommendations for the use of metoclopramide [82–84].

Five published meta-analyses have evaluated the role of prokinetic agent infusion prior to upper GI endoscopy in patients presenting with acute UGIH [82–86]. The most recently published meta-analysis (n=598 patients) by Rahman et al., showed that erythromycin infusion prior to upper endoscopy significantly improved gastric mucosa visualization (OR 4.14, 95%CI 2.01–8.53; P<0.01), reduced the need for a second-look endoscopy (OR 0.51, 95%CI 0.34–0.77; P<0.01), and reduced the length of hospital stay (mean difference –1.75, 95% CI –2.43 to –1.06; P<0.01) [86]. However other relevant outcomes, such as duration of the procedure, units of blood transfused, and need for emergency surgery showed no significant differences. Mortality was not assessed.

A single intravenous dose of erythromycin appears to be safe and generally well tolerated, with no adverse events reported in the meta-analyses. Most studies that reported a significant improvement in endoscopic visualization with pre-endoscopic erythromycin infusion did include patients admitted to the intensive care unit because of acute UGIH with clinical evidence of active bleeding or hematemesis. These are the patients most likely to benefit from erythromycin infusion prior to endoscopy. The dose of erythromycin most commonly used is 250 mg, infused 30–120 minutes prior to upper GI endoscopy. A cost-effectiveness study found that pre-endoscopy erythromycin infusion in UGIH was cost-effective, primarily because of a reduction in the need for second-look endoscopy [87].

It should be noted that there have been difficulties accessing erythromycin in many countries. Furthermore, there are some contraindications to its administration. These include patient sensitivity to macrolide antibiotics and presence of a prolonged QT interval. Drug interactions such as erythromycin-induced digoxin toxicity have been reported to occur when erythromycin is repeatedly administrated, although the risk appears to be very low [88]. In addition, the combination of simvastatin and erythromycin may increase the risk of rhabdomyolysis [89].

Endoscopic management

Timing of upper GI endoscopy

RECOMMENDATION

ESGE recommends adopting the following definitions regarding the timing of upper GI endoscopy in acute UGIH relative to the time of patient presentation: urgent ≤12 hours, early ≤24 hours, and delayed >24 hours. Strong recommendation, moderate quality evidence.

RECOMMENDATION

ESGE recommends that following hemodynamic resuscitation, early (≤24 hours) upper GI endoscopy should be performed.

Strong recommendation, high quality evidence.

RECOMMENDATION

ESGE does not recommend urgent (≤12 hours) upper GI endoscopy since as compared to early endoscopy, patient outcomes are not improved.

Strong recommendation, high quality evidence.

RECOMMENDATION

ESGE does not recommend emergent (≤6 hours) upper GI endoscopy since this may be associated with worse patient outcomes.

Strong recommendation, moderate quality evidence.

RECOMMENDATION

ESGE recommends that the use of antiplatelet agents, anticoagulants, or a predetermined international normalized ratio (INR) cutoff level, should not be used to define or guide the timing of upper GI endoscopy in patients with acute UGIH.

Strong recommendation, low quality evidence.

In patients with acute NVUGIH, upper GI endoscopy performed within 24 hours or after 24 hours of patient presentation are the commonly accepted definitions for "early" and "delayed" endoscopy [90–95]. Urgent upper GI endoscopy in the setting of acute UGIH has been variably defined as endoscopy performed between 6–12 hours of patient presentation [91,96,97]. There is no consensus definition of emergent endoscopy.

Early endoscopy (≤24 hours from the time of patient presentation) is associated with lower in-hospital mortality, shorter length of stay, and lower total hospital costs, and should be performed in patients with acute UGIH [92-94]. A beneficial role of urgent endoscopy (≤12 hours from the time of patient presentation) however, is not routinely demonstrated as published studies show conflicting results. While one recent study concluded that urgent endoscopy was an independent predictor of lower mortality [96], other studies have shown that urgent endoscopy was a predictor of worse patient outcomes [90, 97], or that clinical outcomes were not significantly different between urgent and early endoscopy [91]. Moreover, in a well-executed large RCT by Lau et al., the investigators reported that, at 30-day follow-up, as compared to "early" upper endoscopy (mean time to endoscopy 24.7 ± 9.0 hours), "urgent" upper endoscopy (mean time to endoscopy 9.9 ± 6.1 hours) performed in patients at high risk for further bleeding or death, was not associated with significantly lower rates of further bleeding (7.8% vs. 10.9%; HR 1.46, 95%CI 0.83-2.58) or lower mortality (6.6% vs. 8.9%; HR 1.35, 95%CI 0.72–2.54) [98]. Lastly, in a large prospective cohort study from Denmark, including 12601 patients admitted to hospital with peptic ulcer bleeding, emergent endoscopy (performed <6 hours from the time of patient presentation) was associated with higher inhospital and 30-day mortality, particularly in hemodynamically unstable patients or in patients with an American Society of Anesthesiologists (ASA) score ≥3 [99]. In those patients, optimizing hemodynamic resuscitation and adequately attending to comorbidities prior to endoscopy may improve outcomes.

Although antiplatelet and anticoagulant therapies are usually interrupted or discontinued in patients with acute UGIH, it is now realized that complete reversal of the antithrombotic effect of those drugs is not necessary for performance of diagnostic and therapeutic endoscopy. One study evaluated the risk of rebleeding in patients receiving anticoagulants and concluded that an INR > 2.5 was not a risk factor for rebleeding in patients with acute UGIH [49]. This finding, combined with the fact that the antithrombotic effect of DOACs is not measured by INR, has led to the recommendation to avoid using a predetermined INR

cutoff value to define the timing of endoscopy in the setting of acute UGIH.

On-call GI endoscopy resources

RECOMMENDATION

ESGE recommends the availability of both an on-call GI endoscopist proficient in endoscopic hemostasis and on-call nursing staff with technical expertise in the use of endoscopic devices, to allow performance of endoscopy on a 24/7 basis.

Strong recommendation, low quality evidence.

Although a retrospective study from Japan concluded that the clinical outcomes of patients who underwent emergency endoscopic hemostasis for acute UGIH outside regular hours did not differ from those of patients treated during regular hours [100], two systematic reviews/meta-analyses found otherwise [95, 101]. Xia et al. reported that NVUGIH patients who were admitted out of hours had significantly higher mortality and received less timely endoscopy [95]. Shih and colleagues showed that the "weekend effect" was associated with increased mortality in UGIH patients, particularly in patients with NVUGIH [101].

Endoscopic diagnosis

RECOMMENDATION

ESGE recommends the Forrest (F) classification be used in all patients with peptic ulcer hemorrhage to differentiate low risk and high risk endoscopic stigmata.

Strong recommendation, high quality evidence.

RECOMMENDATION

ESGE recommends that peptic ulcers with spurting or oozing bleeding (Fla or Flb, respectively) or with a non-bleeding visible vessel (Flla) receive endoscopic hemostasis because these lesions are at high risk for persistent bleeding or recurrent bleeding.

Strong recommendation, high quality evidence.

RECOMMENDATION

ESGE suggests that peptic ulcers with an adherent clot (FIIb) be considered for endoscopic clot removal. Once the clot is removed, any identified underlying active bleeding (FIa or FIb) or nonbleeding visible vessel (FIIa) should receive endoscopic hemostasis.

Weak recommendation, moderate quality evidence.

RECOMMENDATION

ESGE does not recommend endoscopic hemostasis in patients with peptic ulcers having a flat pigmented spot (FIIc) or clean base (FIII), as these stigmata have a low risk of adverse outcomes. In selected clinical settings these patients may have expedited hospital discharge. Strong recommendation, moderate quality evidence.

RECOMMENDATION

ESGE does not recommend the routine use of Doppler endoscopic probe in the evaluation of endoscopic stigmata of peptic ulcer bleeding.

Strong recommendation, low quality evidence.

RECOMMENDATION

ESGE does not recommend the routine use of capsule endoscopy technology in the evaluation of acute UGIH. Strong recommendation, low quality evidence.

The Forrest (F) classification was developed more than 40 years ago to standardize the endoscopic characterization of peptic ulcers [102]. The Forrest classification is defined as follows: Fla spurting hemorrhage, Flb oozing hemorrhage, Flla nonbleeding visible vessel, Fllb adherent clot, Fllc flat pigmented spot, and Flll clean base ulcer. This classification has been used in numerous studies to identify patients at risk of persistent ulcer bleeding, recurrent ulcer bleeding, and mortality. Most of these studies have shown that the presence of an ulcer endoscopically classified as Fla or Flb is an independent risk factor for persistent bleeding or recurrent bleeding [103]. A potential limitation of the Forrest classification is that recognition and identification of endoscopic stigmata and interobserver agreement may be less than optimal, although data are conflicting [104, 105].

The classification of FIb as a high risk stigma following endoscopic therapy is controversial. It is apparent that FIb stigmata require endoscopic hemostasis as there is active bleeding (i.e., oozing hemorrhage), but the response to endoscopic treatment may be different compared to that with other high risk endoscopic stigmata of hemorrhage (Fla, Flla, and in some cases FIIb), specifically in peptic ulcer rebleeding rates. An RCT including 388 patients comparing PPI or placebo following successful endoscopic treatment of FIb ulcers found no apparent benefit on rebleeding rates with the addition of PPI (5.4% vs. 4.9%; OR 1.11, 95%CI 0.42-2.95) [106]. In the placebo group, FIb ulcers had a lower risk of rebleeding (4.9%) compared to FIa (22.5%), FIIb (17.6%), and FIIa (11.3%). Studies using a Doppler endoscopic probe have shown rebleeding rates from FIb ulcers following endoscopic therapy to be lower than the rebleeding rates of Fla, Flla and Fllb ulcers. This has led some to consider

a reassessment of the risk stratification of endoscopic stigmata of recent hemorrhage as follows: "high risk," Fla, Flla, and Fllb; "medium risk," FIb and FIIc; and "low risk," FIII [106, 107]. A prospective study, that included two patient cohorts with 87 high risk stigmata (Fla, Flla, Fllb) ulcers and 52 medium risk stigmata (FIb, FIIc) ulcers, demonstrated significantly higher Doppler signal-positive arteries in high risk stigmata ulcers compared to the medium risk stigmata ulcers, before endoscopic hemostasis (87.4% vs. 42.3%, P<0.001) as well as after endoscopic hemostasis (27.4% vs. 13.6%), and significantly higher 30-day rebleeding rates (28.6 % vs. 0%, P = 0.04). In addition, for spurting bleeding (FIa) versus oozing bleeding (FIb), baseline Doppler endoscopic probe arterial flow was 100% versus 46.7%, residual blood flow detected after endoscopic hemostasis was 35.7% versus 0%, and 30-day rebleed rates were 28.6% versus 0% (all P<0.05) [107]. However, given the low numbers of patients included in this study, larger size studies are needed before considering a change in endoscopic stigmata risk classification.

In addition to the Forrest classification, there are additional endoscopic features of peptic ulcers that can predict adverse outcomes and/or endoscopic treatment failure and recent publications continue to support this [108, 109]. These endoscopic features include large size of ulcer (>2 cm), large size of non-bleeding visible vessel, and ulcer location on the posterior duodenal wall or the proximal lesser curvature of the stomach.

The persistence of a positive Doppler probe signal following endoscopic hemostasis has been shown to predict recurrent bleeding [110]. The results of available studies have been disparate and limited by their methodology, the older endoscopic hemostasis therapies used, and the small numbers of patients included. However, two recent studies have used a throughthe-scope (TTS) Doppler probe to quide endoscopic hemostasis. In an RCT with a subgroup of 86 patients with peptic ulcer bleeding, 53 were classified as "high risk" (Fla, Flla, Fllb) and 23 as "medium risk" (FIb, FIIc). Patients were randomly assigned to standard endoscopic hemostasis or Doppler probeguided hemostasis with repeat intervention until the Doppler signal was completely obliterated. Total rebleeding rates were significantly lower in the Doppler probe-guided hemostasis group (11.1% vs. 26.3%, P=0.02) but there were no significant differences in other outcomes [111]. In a study comprising 60 patients with Fla, Flb, and Flla ulcers that were "assigned by chance" to standard endoscopic hemostasis (n = 25) or Doppler probe-guided intervention (n = 35) until the Doppler signal was obliterated, the Doppler probe-quided hemostasis group showed significantly lower rates for rebleeding (52% vs. 20%, P=0.013) and surgery (2% vs. 26%, P=0.02) [112]. A costminimization analysis suggests a per-patient cost-saving with the use of the Doppler endoscopic probe in patients with peptic ulcer bleeding, but cost-savings may be dependent on and limited to specific healthcare settings [113].

Since publication of the previous ESGE NVUGIH Guideline, five additional studies have been published that evaluate the role of capsule endoscopy technology (e.g., video capsule endoscopy, magnetically assisted capsule endoscopy, telemetric sensor capsule) in acute UGIH, namely one RCT, three

prospective cohort studies, and one retrospective case series [114-118]. In the only RCT, Marya et al. reported on 87 patients with nonhematemesis GI hemorrhage who were randomized to early video capsule endoscopy or to "standard of care" whereby the gastroenterologist chose which procedures to perform and when to perform them based on the patient's presentation [114]. A source of GI bleeding was located in 64.3% of the patients in the early video capsule endoscopy arm and in 31.1% of the patients in the standard of care arm (P < 0.01). Moreover, the likelihood of endoscopic location of bleeding over time was greater for patients receiving early video capsule endoscopy (adjusted hazard ratio 2.77, 95%CI 1.36-5.64). Overall, patients who received capsule endoscopy technology to evaluate their GI bleeding were more likely to undergo therapeutic procedures (e.g., balloon enteroscopy, colonoscopy, or surgery) than patients with standard of care treatment. Thus, capsule endoscopy technology may be helpful in the setting of acute UGIH, as it may assist in the clinical management plan. However, because data continue to be limited, including on costs and on availability of technology, the exact role for capsule endoscopy modalities in evaluating patients presenting with acute UGIH remains unknown. Additional high level studies are needed to further assess the diagnostic role of capsule endoscopy in this patient population.

Endoscopic therapy for peptic ulcer hemorrhage

RECOMMENDATION

Fla, Flb (active bleeding)

(a) ESGE recommends for patients with actively bleeding ulcers (Fla, Flb), combination therapy using epinephrine injection plus a second hemostasis modality (contact thermal or mechanical therapy).

Strong recommendation, high quality evidence.

(b) ESGE suggests that in selected actively bleeding ulcers (Fla, Flb), specifically those > 2 cm in size, with a large visible vessel > 2 mm, or located in a high risk vascular area (e.g., gastroduodenal, left gastric arteries), or in excavated/fibrotic ulcers, endoscopic hemostasis using a cap-mounted clip should be considered as first-line therapy.

Weak recommendation, low quality evidence.

RECOMMENDATION

FIIa (nonbleeding visible vessel)

ESGE recommends, for patients with an ulcer with a nonbleeding visible vessel (FIIa), contact or noncontact thermal therapy, mechanical therapy, or injection of a sclerosing agent, each as monotherapy or in combination with epinephrine injection.

Strong recommendation, high quality evidence.

RECOMMENDATION

ESGE does not recommend that epinephrine injection be used as endoscopic monotherapy. If used, it should be combined with a second endoscopic hemostasis modality. Strong recommendation, high quality evidence.

RECOMMENDATION

ESGE recommends that "persistent bleeding" be defined as ongoing active bleeding refractory to standard hemostasis modalities.

Strong recommendation, high quality evidence.

RECOMMENDATION

ESGE suggests that in patients with persistent bleeding refractory to standard hemostasis modalities, the use of a topical hemostatic spray/powder or cap-mounted clip should be considered.

Weak recommendation, low quality evidence.

RECOMMENDATION

ESGE recommends that in patients with persistent bleeding refractory to all modalities of endoscopic hemostasis, transcatheter angiographic embolization (TAE) should be considered. Surgery is indicated when TAE is not locally available or after failed TAE.

Strong recommendation, moderate quality evidence.

Endoscopic hemostasis can be achieved using injection, thermal, and/or mechanical modalities, and it has been well demonstrated that any endoscopic hemostasis therapy is superior to pharmacotherapy alone in patients with Fla, Flb and Flla ulcers [119, 120]. Meta-analyses show that thermal devices (contact and noncontact), injectable agents other than epinephrine (i. e., sclerosing agents, thrombin/fibrin glue), and clips are all effective methods for achieving durable hemostasis, with no single modality being superior [119–123]. Epinephrine injection therapy is effective at achieving primary hemostasis, but inferior to other endoscopic hemostasis monotherapies or combination therapy in preventing ulcer rebleeding [119,120,122]. Therefore, current evidence-based guidelines recommend that if epinephrine is used to treat peptic ulcer

bleeding with high risk stigmata, it should only be used in combination with a second endoscopic hemostasis modality and not as monotherapy [1,15].

▶ Fig. 3 a-c presents an algorithm, stratified according to the Forrest classification of endoscopic stigmata, for the endoscopic management of NVUGIH secondary to peptic ulcer.

Two recent meta-analyses support the superiority of combination endoscopic therapy (injection plus thermal therapy, and injection plus mechanical therapy) over epinephrine injection monotherapy in peptic ulcers with high risk stigmata [124, 125]. Baracat et al. performed a systematic review and metaanalysis of 28 RCTs that included 2988 adults with high risk peptic ulcer endoscopic stigmata. These authors reported that injection therapy alone, as compared to injection plus thermal therapy was inferior in terms of ulcer rebleeding (risk difference [RD] -0.08, 95%CI -0.14 to -0.02) and need for emergency surgery (RD -0.06, 95%CI -0.12 to 0.00). Moreover, they reported that injection therapy alone, as compared to injection plus mechanical therapy was also inferior in terms of rebleeding (RD -0.10, 95%CI -0.018 to -0.03) and need for surgery (RD -0.11, 95%CI -0.18 to -0.04) [124]. No significant difference in mortality between hemostasis modalities was observed. In a network meta-analysis, Shi et al. reported that the addition of mechanical therapy following epinephrine injection significantly reduced the probability of rebleeding and surgery (OR 0.19, 95%CI 0.07-0.52 and OR 0.10, 95%CI 0.01-0.50, respectively), while the addition of thermal therapy only reduced ulcer rebleeding rates (OR 0.30, 95%CI 0.10-0.91) [125].

With respect to noncontact thermal therapy (e.g., argon plasma coagulation [APC]), limited data from three previous small RCTs suggest that in peptic ulcer hemorrhage, APC may provide similar efficacy to injection of a sclerosing agent (polidocanol) or contact thermal therapy (heater probe) [119]. More recently, a single RCT (noninferiority design) compared combination endoscopic therapies using epinephrine injection plus APC versus epinephrine injection plus soft coagulation using hemostatic forceps [126]. That study included 151 patients with high risk stigmata gastroduodenal ulcers (FIa, FIb, FIIa). The authors reported similar outcomes between APC and hemostatic forceps for rates of primary hemostasis (96.0% vs. 96.1%, P=1.00), 7-day ulcer rebleeding (4.0% vs. 6.6%, P=0.72) and 30-day ulcer rebleeding rates (6.7% vs. 9.2%, P=0.56).

Clinicians must distinguish between two clinical scenarios in NVUGIH: persistent bleeding and recurrent bleeding. Persistent bleeding is defined as ongoing active bleeding (spurting, arterial pulsatile bleeding, or oozing) that is present at the end of index endoscopy and refractory to standard hemostasis modal-

▶ Fig. 3 Algorithm for the endoscopic management of nonvariceal upper gastrointestinal hemorrhage (NVUGIH) secondary to peptic ulcer, stratified by Forrest classification endoscopic stigmata: a Fla, Flb, Flla; b Fllb; c Fllc, Flll. ¹Use of a large single-channel or double-channel therapeutic upper gastrointestinal endoscope is recommended. ²Large-size 10-Fr probe recommended for contact thermal therapy. ³Absolute alcohol, polidocanol, or ethanolamine injected in limited volumes. ⁴The benefit of endoscopic hemostasis may be greater in patients at higher risk for recurrent bleeding, e.g., with older age, comorbidities, in-hospital UGIH. GI, gastrointestinal; PPI, proton pump inhibitor, TAE, transcatheter angiographic embolization.

Performance of upper GI endoscopy¹

High risk endoscopic stigmata

Fla (active spurting, pulsatile arterial bleeding)
Flb (active oozing)
Fla (nonbleeding visible vessel)

Perform endoscopic hemostasis

Fla and Flb stigmata

Combination therapy using dilute epinephrine injection + a second hemostasis modality (thermal², mechanical or sclerosant injection³)

Flla stigmata

Thermal², mechanical, or sclerosant injection³ as monotherapy or in combination with dilute epinephrine injection

- High dose PPI (intravenous bolus + continuous infusion or minimum twice-daily intravenous bolus dosing for 72 hours or oral dosing)
- May start clear liquids soon after endoscopy
- Test for *Helicobacter pylori* at index endoscopy, treat if positive; document *H. pylori* eradication
- If negative H. pylori test at index endoscopy, repeat testing within 4 weeks following the acute bleeding episode to confirm initial test was true negative

If clinical evidence of rebleeding, repeat endoscopy with endoscopic hemostasis if indicated;

If endoscopic hemostasis still unsuccessful, refer for TAE if locally available, otherwise refer for surgery

Performance of upper GI endoscopy¹

FIIb (adherent clot)

Consider performing clot removal followed by endoscopic hemostasis of underlying high risk stigmata⁴ OR

Medical management with high dose PPI (intravenous bolus + continuous infusion for 72 hours or minimum twice-daily intravenous bolus dosing for 72 hours or oral dosing)

If clot removal/endoscopic hemostasis performed:

- Dilute epinephrine injection circumferential to base of clot followed by clot removal using cold polyp snare quillotine technique
- If underlying high risk stigmata identified after clot removal, apply endoscopic hemostasis as described for Fla, Flb, Flla stigmata
- High dose PPI (intravenous bolus + continuous infusion or minimum twice-daily intravenous bolus dosing for 72 hours or oral dosing)
- May start clear liquids soon after endoscopy
- Test for H. pylori, treat if positive; document H. pylori eradication
- If negative H. pylori test at index endoscopy, repeat testing within 4 weeks following the acute bleeding episode to confirm initial test was true negative

If clinical evidence of rebleeding, repeat endoscopy with endoscopic hemostasis if indicated;

If endoscopic hemostasis still unsuccessful, refer for TAE if locally available, otherwise refer for surgery

Ь

Performance of upper GI endoscopy¹

Low risk stigmata
FIIc (flat pigmented spot)

FIII (clean base)

No endoscopic hemostasis required

In select clinical settings, these patients may have expedited hospital discharge

- Start oral PPI
- Start regular diet
- Test for *H. pylori*, treat if positive; document *H. pylori* eradication
- If negative *H. pylori* test at index endoscopy, repeat testing within 4 weeks following the acute bleeding episode to confirm initial test was true negative

C

ities. This is also referred to as "failed primary endoscopic hemostasis" [1]. Few RCTs have compared alternative treatment modalities in the management of patients with persistent ulcer bleeding. Meta-analyses and retrospective case series comparing transcatheter arterial embolization (TAE) and surgery suggest that patient outcomes following either approach are similar [127–129]. TAE, however, is associated with a higher failure rate in the control of bleeding [127–129]. A population-based cohort study compared outcomes in 282 patients (97 TAE and 185 surgery) and found a 34% lower mortality among those in the TAE group (adjusted HR 0.66, 95%CI 0.46–0.96). However, similarly to other cohort studies, rebleeding was higher after TAE (HR 2.48, 95%CI 1.33–4.62), whereas following surgery adverse events were significantly higher (32.2% vs. 8.3%, *P*<0.001) [130].

Since publication of the original ESGE NVUGIH guideline in 2015, several additional studies have reported on the clinical efficacy of topical hemostatic agents (e.g., TC-325, Endoclot, and Inha University-Endoscopic Wound Dressing [UI-EWD]) in patients with GI bleeding secondary to peptic ulcer bleeding. These include case series, a multicenter patient registry, a pilot RCT, and a cost-effectiveness analysis [131–134]. A multicenter (12 sites) patient registry evaluated the effectiveness of TC-325 in upper and lower GI bleeding (167/314 [53%] due to peptic ulcer) [132]. In the subgroup of peptic ulcer hemorrhage (most common stigmata, FIb), the authors reported an overall hemostasis rate of 86%, an overall rebleeding rate of 12.7%, and 7-day and 30-day all-cause mortality of 16.2% and 24.6%, respectively. These data however should be interpreted with caution because of the inherent limitations of a patient registry that included lack of randomization or sequential patient selection, multiple bleeding indications (with GI bleeding secondary to malignancy being over-represented in the cohort), along with patient selection bias and self-reported or unverified outcomes. In addition, a pilot RCT evaluated the clinical efficacy of TC-325 with/without epinephrine injection versus through-thescope (TTS) clipping with/without epinephrine injection, in 39 patients with active NVUGIH (the majority of cases due to peptic ulcer, and 35/39 [89.7%] with FIb oozing bleeding) [133]. The authors reported that primary hemostasis was achieved in all TC-325 cases and in 90% of the mechanical therapy group (P = 0.49). There was no difference in rebleeding, need for surgery, or mortality rates between the groups. This was a small pilot study with a limited number of patients enrolled, and thus not adequately powered to show a statistically significant difference between groups. Moreover, five patients in the TC-325 group required additional endoscopic intervention at the time of second-look endoscopy, while none in the clipping group required such therapy (P=0.04). These results should not be extrapolated to Fla bleeding lesions. Lastly, a decision analysis model compared the cost-effectiveness of traditional endoscopic hemostasis therapies alone, TC-325 alone, or these therapies in combination, when treating acute NVUGIH [134]. The authors reported that traditional endoscopic hemostasis complemented by TC-325 was more efficacious (97% avoiding rebleeding) and less expensive than comparator treatments (mean cost per patient \$9150). The second most cost-effective

approach was TC-325 plus traditional endoscopic hemostasis (5.8% less effective and \$635 more costly per patient). The limitations of topical sprays/powders are that they only bind to sites with active bleeding and usually wash away within 12–24 hours; thus they are a temporary measure.

The role of cap-mounted clips (e.g., the Over the Scope Clip [OTSC], Ovesco, Tübingen, Germany; and the Padlock system, Steris Endoscopy, Mentor, Ohio, USA) in treating NVUGIH, used as first-line and second-line (e.g., rescue/salvage) therapy, continues to evolve. In a retrospective case series evaluating over-the-scope (OTS) clip technology as first-line treatment in NVUGIH (the FLETRock study), Wedi et al. reported on 118 patients with NVUGIH, including 60 patients (50.8%) defined as high risk based upon a Rockall risk score ≥8 [135]. Primary clinical success (hemostasis by OTS clipping alone) was achieved in 107 patients (90.8%) and secondary clinical success (hemostasis by OTS clipping in combination with adjunctive measures) in 7 patients (1.7%). In 7.5% of clip applications, the bleeding could not be stopped and treatment was defined as clinical failure. Patients with Forrest Ia active bleeding were at higher risk of rebleeding (11/31 patients, 35.5%). Manta et al., in a multicenter retrospective study, also reported on the outcomes of 286 patients (74.8% with NVUGIH) who were treated with OTS clipping as first-line endoscopic hemostasis therapy [136]. Of the 214 patients with NVUGIH, technical success was achieved in 208 (97.2%), including 202/208 (97.1%) achieving hemostasis with OTS clipping as monotherapy. Early rebleeding, within 24 hours, occurred in 9 patients (4.5%), and no delayed bleeding (within 30 days) was reported. Technical failure of OTS clipping occurred in 6 patients, in ulcers located in the gastric fundus or posterior wall of the duodenal bulb. Brandler et al. reported an additional retrospective case series of 67 patients (60 patients with NVUGIH, including 49 due to peptic ulcer, 11 with Forrest Ia active bleeding) with bleeding lesions defined by the authors as being at "high risk of adverse outcome" (visible vessel > 2 mm; ulcer location in high risk vascular region, including gastroduodenal, left gastric arteries; penetrating, excavated or fibrotic ulcer with high risk stigmata) [137]. OTS clipping was performed as first-line therapy in 49 patients. The authors reported 100% technical success, OTS clipping success (no bleeding related to OTS clipping requiring re-intervention) in 52 patients (81.3%), and true success (no bleeding within 30 days) in 46 patients (71.8%). They reported no adverse events.

In a systematic review and meta-analysis, Chandrasekar et al. examined the effectiveness of cap-mounted clip technology in achieving "definitive hemostasis" in GI bleeding, defined as successful primary hemostasis without rebleeding during the follow-up period (median 56 days) [138]. This meta-analysis included 21 studies (1 RCT, 20 observational) with 851 patients (687 with UGIH). In those patients with UGIH, OTS clipping was used as first-line endoscopic therapy in 75.8% and definitive hemostasis was achieved in 86.6% (95%CI 81.9–91.3). The rebleeding rate in patients with UGIH was 11.0% (95%CI 6.8%–15.2%). The OTSC failure rate for UGIH was 6.2% (95%CI 3.1%–9.2%) and 16.9% (95%CI 9.3%–24.5%) for first- and second-line therapy, respectively. It must be noted that this meta-analysis is

limited, as all included studies but one were observational in design. Other observational studies have also reported on the efficacy and safety of OTSC used as either first-line or second-line hemostasis treatment, with similar findings [139–144].

Very recently, the first blinded RCT evaluating the efficacy and safety of a cap-mounted clip (OTS clip, n = 25) versus standard endoscopic hemostasis therapy (TTS clip or contact thermal therapy using multipolar electrocoagulation, n=28) for firstline treatment of acute peptic ulcer or Dieulafoy bleeding was published by Jensen et al. [145]. The investigators reported that compared to standard endoscopic hemostasis, there was both significantly less recurrent bleeding within 30 days (1/25 [4.0%] vs. 8/28 [28.6%], P=0.017) and fewer adverse events (0/25 [0%] vs. 4/28 [14.3%], P=0.049) in the OTS clip group. There were no observed differences in need for surgery or mortality. However, a number of methodological limitations to this study must be noted, including the relatively limited number of patients, the inclusion of Dieulafoy lesions in addition to peptic ulcers, and the use of unconventional definitions of "major" endoscopic stigmata of recent hemorrhage that are not widely adopted.

In a multicenter RCT from Europe and Asia (the STING study), Schmidt et al. reported on 66 patients with recurrent peptic ulcer hemorrhage following initially successful endoscopic hemostasis, who were randomly assigned to undergo hemostasis with either OTS clipping (n = 33) or standard endoscopic therapy (using TTS clips, n = 31, or contact thermal therapy plus injection with dilute epinephrine, n = 2) [146]. By perprotocol analysis, persistent ulcer bleeding was observed in 14 patients (42.4%) in the standard therapy group and 2 patients (6.0%) in the OTS clip group (P=0.001). Recurrent ulcer bleeding within 7 days occurred in 5 patients (16.1%) in the standard therapy group versus 3 patients (9.1%) in the OTS clip group (P = 0.47). Further bleeding occurred in 19 patients (57.6%) in the standard therapy group and in 5 patients (15.2%) in the OTS clip group (absolute difference 42.4%, 95%CI 21.6%-63.2%; P =0.001). During 30 days of follow-up, 1 patient (3.0%) in the standard therapy group and 1 patient (3.0%) in the OTS clip group required surgery (P=0.99), 2 patients (6.3%) died in the standard therapy group and 4 patients (12.1%) died in the OTSC group (P = 0.67).

To date, almost all evidence on the efficacy of OTS clipping is derived from case series or case series compared with historical controls. Randomized trials directly comparing topical agents and OTS clips/clamps with traditional hemostasis therapies are required to better define their true efficacies and safety in both first-line and second-line endoscopic management of acute

RECOMMENDATION

ESGE suggests considering the use of hemostatic forceps as an alternative endoscopic hemostasis option in peptic ulcer hemorrhage

Weak recommendation, moderate quality evidence.

NVUGIH, especially peptic ulcer bleeding.

In 2015, the previously published ESGE guideline on NVUGIH reported on two small studies that compared the efficacy of mechanical therapy versus hemostatic forceps in peptic ulcer hemorrhage [147, 148]. The first was an RCT conducted in 96 patients with high risk bleeding gastric ulcers; it showed that use of monopolar, soft coagulation hemostatic forceps was as effective as mechanical therapy [147]. The second study was a prospective cohort study including 50 patients in whom use of bipolar hemostatic forceps was more effective than endoscopic clipping, for both initial hemostasis (100% vs. 78.2%, P<0.05) and preventing recurrent bleeding (3.7% vs. 22.2%, P not significant) [148]. More recently, three additional RCTs have evaluated the efficacy of hemostatic forceps in peptic ulcer hemorrhage. Nunoe et al. reported on 111 patients with peptic ulcer hemorrhage; compared to contact thermal therapy (i. e., heater probe), hemostatic forceps achieved a significantly higher rate of primary hemostasis (96% vs. 67%, P<0.001) and lower ulcer rebleeding rates (0 vs. 12%) [149]. Kim et al, included 151 patients and failed to show any significant difference in rates of primary hemostasis, rebleeding, adverse events, or mortality between argon plasma coagulation (APC) and hemostatic forceps [150]. Finally, Toka et al. compared epinephrine injection plus hemostatic forceps to epinephrine injection plus mechanical therapy using TTS clips, in 112 patients, and demonstrated that as compared to mechanical therapy, hemostatic forceps achieved significantly higher rates of primary hemostasis (98.2% vs. 80.4%, P=0.004) and significantly lower ulcer rebleeding (3.6% vs. 17.7%, P=0.04) [151].

Box 1 presents a description of the endoscopic hemostatic modalities.

Post-endoscopy management

Proton pump inhibitor therapy

RECOMMENDATION

ESGE recommends high dose proton pump inhibitor (PPI) therapy for patients who receive endoscopic hemostasis, and for patients with FIIb ulcer stigmata (adherent clot) not treated endoscopically.

(a) PPI therapy should be administered as an intravenous bolus followed by continuous infusion (e.g., 80 mg then 8 mg/hour) for 72 hours post endoscopy.

(b) High dose PPI therapies given as intravenous bolus dosing (twice-daily) or in oral formulation (twice-daily) can be considered as alternative regimens.

Strong recommendation, high quality evidence.

Previously published evidence-based guidelines on NVUGIH recommended that PPI therapy, given as an 80 mg intravenous bolus followed by 8 mg/hour continuous infusion, be used to decrease ulcer rebleeding and mortality in patients with high risk endoscopic stigmata who had undergone successful endoscopic hemostasis [1,15]. Meta-analyses of RCTs comparing low dose (80 mg/day or lower) to high dose PPI (>80 mg/day), suggest that patient-centered outcomes were similar following

BOX 1 ENDOSCOPIC HEMOSTASIS TOOLBOX

Injection therapy

The primary mechanism of action of injection therapy is local tamponade resulting from a volume effect. Diluted epinephrine (1:10 000 or 1:20 000 with normal saline injected in 0.5–2-ml aliquots in and around the ulcer base) may also have a secondary effect that produces local vasoconstriction. Sclerosing agents such as ethanol, ethanolamine, and polidocanol produce hemostasis by causing direct tissue injury and thrombosis. Another class of injectable agents are tissue adhesives including thrombin, fibrin, and cyanoacrylate glues, which are used to create a primary seal at the site of bleeding.

Endoscopic injection is performed using needles which consist of an outer sheath and an inner hollow-core needle (19–25 gauge). The endoscopist or nursing assistant retracts the needle into the plastic sheath for safe passage through the working channel of the endoscope. When the catheter is passed out of the working channel and placed near the site of bleeding, the needle is extended out of the sheath and the solution injected into the mucosa using a syringe attached to the catheter handle.

Thermal therapy

Thermal devices are divided into contact and noncontact modalities. Contact thermal devices include heater probes that generate heat directly, multipolar/bipolar electrocautery probes that generate heat indirectly by passage of an electrical current through the tissue, and monopolar/bipolar hemostatic forceps. Noncontact thermal devices include argon plasma coagulation. Heat generated from these devices leads to edema, coagulation of tissue proteins, vasoconstriction, and indirect activation of the coagulation cascade, resulting in a hemostatic bond. Contact thermal probes also use local tamponade (mechanical pressure of the probe tip directly onto the bleeding site) combined with heat or electrical current to coagulate blood vessels, a process known as "coaptive coagulation."

Heater probes (available in 7-Fr and 10-Fr sizes) consist of a Teflon-coated hollow aluminum cylinder with an inner heating coil combined with a thermocoupling device at the tip of the probe to maintain a constant energy output (measured in joules, commonly delivering 15-30]). Multipolar/bipolar electrocautery contact probes deliver thermal energy by completion of an electrical local circuit (no grounding pad required) between two electrodes on the tip of the probe as current flows through nondesiccated tissue. As the targeted tissue desiccates, there is a decrease in electrical conductivity, limiting the maximum temperature and depth and area of tissue injury. An endoscopistcontrolled foot pedal activates the heater probe, controls the delivery of the energy (measured in watts) and provides waterjet irrigation. The standard setting for use in achieving hemostasis in peptic ulcer bleeding is 15-20 watts, which is delivered in 8–10-second applications (commonly referred to as tamponade stations).

Monopolar/bipolar hemostatic forceps are contact thermal devices widely used in the treatment of blood vessels or active bleeding during endoscopic submucosal dissection (ESD) and third-space endoscopy (e.g., peroral endoscopic myotomy [POEM]). However, studies evaluating the utility and safety of hemostatic forceps in the treatment of peptic ulcer bleeding are limited. Technically, hemostatic forceps are applied differently during treatment of bleeding in ESD/ POEM and peptic ulcers. In ESD/POEM, the vessel is grasped and gently retracted by the forceps, then soft coagulation is applied. In the treatment of peptic ulcer bleeding, soft coagulation is applied directly by contacting the bleeding point with the closed tip of the hemostatic forceps. Potential disadvantages of hemostatic forceps should be considered, including a reduced coagulation effect in the presence of blood, clots, or water between the tip of the forceps and the bleeding point. Moreover, because of the monopolar nature of some hemostatic forceps, the mode of the cardiac device needs to be adjusted in patients with pacemakers and implantable cardioverter-defibrillators. Argon plasma coagulation (APC), a noncontact thermal modality, uses high frequency, monopolar alternating cur-

Argon plasma coagulation (APC), a noncontact thermal modality, uses high frequency, monopolar alternating current that is conducted to the target tissue without mechanical contact, resulting in coagulation of superficial tissue. The electrons flow through a stream of electrically activated ionized argon gas, from the probe electrode to the target, causing tissue desiccation at the surface. As the tissue surface loses its electrical conductivity, the plasma stream shifts to adjacent nondesiccated (conductive) tissue, which again limits the depth of tissue injury. If the APC catheter is not near the target tissue, there is no ignition of the gas and depression of the foot pedal results only in flow of inert argon gas. Coagulation depth is dependent on the generator power setting, duration of application, and distance from the probe tip to the target tissue (optimal distance 2–8 mm).

Mechanical therapy

Endoscopic mechanical therapies include clips (throughthe-scope [TTS] and cap-mounted) and band ligation devices. TTS endoscopic clips are deployed directly onto a bleeding site and typically slough off within days to weeks after placement. Clips are available in a variety of jaw lengths and opening widths. The delivery catheter consists of a metal cable within a sheath enclosed within a Teflon catheter. After insertion of the catheter through the working channel of the endoscope, the clip is extended out of the sheath. The clip is then positioned over the target area and opened with the plunger handle. A rotation mechanism on the handle is available on some commercially available clips and this allows the endoscopist to change the orientation of the clip at the site of bleeding. The jaws of the clip are applied with pressure and closed onto the target tissue by using the device handle. Some clips may be opened, closed, and repositioned, whereas others are permanently deployed and released upon clip closure. Similarly, some clips are automatically released on deployment, while others require repositioning of the plunger handle to release the deployed clip from the catheter. Hemostasis is achieved by mechanical compression of the bleeding site.

Currently two types of cap-mounted clip devices are commercially available for use in GI bleeding: the Ovesco Over The Scope Clip (OTSC) system (Ovesco Endoscopy, Tübingen, Germany) and the Padlock system (Steris Endoscopy, Mentor, Ohio, USA). These devices are similar in that they both utilize an applicator cap preloaded with a nitinol clip (either bearclaw-shaped with teeth or hexagonal in shape with circumferentially placed inner prongs) that fits onto the tip of the endoscope. However, there are some differences between these systems. In the Ovesco OTSC system, the applicator cap, with the preloaded nitinol clip, is affixed to the tip of the endoscope and incorporates a clip-release thread, which is pulled retrogradely through the working channel of the endoscope and fixed onto a handwheel mounted on the working channel access port of the endoscope. The clip is released by the endoscopist's turning the handwheel, in a manner similar to deploying a variceal ligation band. In contrast, the Padlock system deploys its hexagonally shaped clip using its "Lock-it" releasing mechanism. This is installed on the handle of the endoscope and connects to the clip by a linking cable delivery system on the outside of the endoscope. Thus, unlike the OTSC system, the Padlock does not take up the endoscope's working channel. The clips of both systems may remain attached to tissue for weeks. Deployment of a cap-mounted clip requires accurate positioning and adequate retraction of tissue into the cap of the device (either by suction or use of a retractor/anchoring device) before the clip can be properly deployed. Clipping of lesions located in difficult anatomic positions, such as the proximal lesser curvature of the stomach and the anatomic transition from the first to second part of the duodenum, can be technically challenging. Finally, endoscopic band ligation devices, commonly used in esophageal variceal bleeding, have also been reported for treatment of NVUGIH (e.g., Dieulafoy lesions). These involve the placement of elastic bands over tissue to produce mechanical compression and tamponade.

Topical therapy

Topical agents are increasingly being used for nonvariceal upper gastrointestinal hemorrhage (NVUGIH). Advantages of noncontact, spray catheter delivery of hemostatic agents include ease of use, lack of need for precise lesion targeting, access to lesions in difficult locations, and the ability to treat a larger surface area. One example of a topical agent is TC-325, also known as Hemospray (Cook Medical, Winston-Salem, North Carolina, USA), which is a proprietary, inorganic, absorbent powder that rapidly concentrates clotting factors at the bleeding site, forming a coagulum. Hemospray is applied using a hand-held device consisting of a pressurized CO2 canister, a TTS delivery catheter, and a reservoir for the powder cartridge. The powder is delivered by the endoscopist by pushing a button in 1-2second bursts until hemostasis is achieved. The maximum amount of TC-325 that can be safely administered during a single treatment session has not yet been established. The coagulum typically sloughs within 3 days and is naturally eliminated.

Other topical hemostatic sprays/powders include Endo-Clot, Ankaferd Blood Stopper, and Inha University-Endoscopic Wound Dressing (UI-EWD). EndoClot (EndoClot Plus, Santa Clara, California, USA) consists of absorbable modified polymers and is intended to be used as an adjuvant hemostatic agent to control bleeding in the GI tract. It is a biocompatible, nonpyogenic, starch-derived compound that rapidly absorbs water from serum and concentrates platelets, red blood cells, and coaquiation proteins at the bleeding site to accelerate the clotting cascade. Hemostatic sprays/powders derived from plant products/extracts have also been evaluated, such as Ankaferd Blood Stopper (Ankaferd Health Products, Istanbul, Turkey). This topical agent promotes formation of a protein mesh that acts as an anchor for erythrocyte aggregation without significantly altering coagulation factors or platelets. It is delivered onto the bleeding site via an endoscopic spray catheter until an adherent coagulum is formed. The particles are subsequently cleared from the bleeding site within hours to days. Finally, UI-EWD (NextBiomedical, Incheon, South Korea) is a biocompatible natural polymer in powder form using aldehyded dextran and succinic acid-modified L-lysine that is converted to an adhesive gel when in contact with water. The hemostatic powder is delivered via a spray catheter placed through the endoscope's working channel.

It should be noted that the overall efficacy of topical agents in brisk arterial bleeding (FIa) may be limited because of the rapid "wash-away" effect of the hemostatic agent by ongoing blood flow.

intermittent PPI administration (given either as intravenous bolus dosing or orally) [152, 153]. In their meta-analysis of 13 RCTs of high risk bleeding ulcers treated with endoscopic hemostasis, Sachar et al. compared intermittent PPI dosing (oral or intravenous) with the post-hemostasis PPI regimen of 80 mg intravenous bolus followed by 8 mg/hour continuous infusion [154]. The authors reported that the RR for recurrent ulcer bleeding within 7 days for intermittent infusion of PPI versus bolus plus continuous infusion of PPI was 0.72 (upper boundary of one-sided 95 %CI, 0.97), with an absolute risk difference of -2.64. RRs for other outcomes, including radiologic/surgical intervention and mortality, showed no differences between infusion regimens. These meta-analytic data indicate that intermittent PPI therapy may be comparable to intravenous bolus plus continuous PPI infusion following endoscopic hemostasis.

Given the pharmacodynamic profile of PPIs, consideration should be given to use of a higher dose of PPI (80 mg or more) given either intravenously or orally at least twice-daily [155]. These data appear to be supported by the results from an RCT (double-dummy, placebo-controlled design) that randomly assigned patients with peptic ulcer hemorrhage to high dose continuous infusion of esomeprazole versus 40 mg of oral esomeprazole twice-daily for 72 hours (118 vs. 126 patients, respectively) following endoscopic hemostasis [156]. In that study, recurrent ulcer bleeding at 30 days was reported in 7.7% and 6.4% of patients, respectively (difference -1.3 percentage points, 95%CI -7.7 to 5.1 percentage points) [156]. However, it must be pointed out this study was conducted in an all-Asian population, was not a noninferiority study design, was stopped prematurely because of difficulty in patient recruitment, and lacks sufficient sample size to detect any small difference between low dose and high dose PPI regimens.

RECOMMENDATION

ESGE does not recommend routine second-look endoscopy as part of the management of NVUGIH.
Strong recommendation, high quality evidence.

Routine second-look endoscopy is defined as a scheduled repeat endoscopic assessment of a previously diagnosed bleeding lesion usually performed within 24 hours following the index endoscopy [1]. This strategy employs repeat endoscopy regardless of the type of bleeding lesion, perceived rebleeding risk, or clinical signs of rebleeding. However, second-look endoscopy should be reserved for selected patients considered to be at high risk of recurrent bleeding. Previous studies have failed to demonstrate either a clinical or economic benefit of routine second-look endoscopy [157, 158]. More recently, two RCTs from Asia both reported no benefit of routine secondlook endoscopy in peptic ulcer hemorrhage [159, 160]. Chiu et al. showed similar rates of rebleeding within 30 days, in 10/153 (6.5%) in a PPI infusion group and in 12/152 (7.9%) in a secondlook endoscopy group (P=0.646). Moreover, ICU stay, transfusion requirements, need for surgery, and mortality were also not different between the groups. However, patients in the

second-look endoscopy group were discharged from hospital 1 day earlier (P<0.001) [159]. Park et al. found a higher rate of rebleeding within 30 days in those patients who underwent routine second-look endoscopy (16/158 (10.2%) vs. 9/161 (4.5%), P=0.13) [160]. Thus, second-look endoscopy should be reserved for selected patients considered to be at high risk of recurrent bleeding. This includes patients in whom at index endoscopy there was an actively bleeding lesion, poor endoscopic visualization or an incomplete examination, or failure to identify a definitive source of hemorrhage, or when endoscopic hemostasis was considered by the endoscopist to be suboptimal.

Management of recurrent bleeding

RECOMMENDATION

ESGE recommends that recurrent bleeding be defined as bleeding following initial successful endoscopic hemostasis.

Strong recommendation, high quality evidence.

RECOMMENDATION

ESGE recommends that patients with clinical evidence of recurrent bleeding should receive repeat upper endoscopy, including hemostasis if indicated.

Strong recommendation, high quality evidence.

RECOMMENDATION

ESGE recommends that in the case of failure of this second attempt at endoscopic hemostasis, transcatheter angiographic embolization (TAE) should be considered. Surgery is indicated when TAE is not locally available or after failed TAE.

Strong recommendation, high quality evidence.

RECOMMENDATION

ESGE recommends that for patients with clinical evidence of recurrent peptic ulcer hemorrhage, use of a capmounted clip should be considered. In the case of failure of this second attempt at endoscopic hemostasis, transcatheter angiographic embolization (TAE) should be considered. Surgery is indicated when TAE is not locally available or after failed TAE.

Strong recommendation, moderate quality evidence.

As previously stated, recurrent bleeding is defined as bleeding following initial successful endoscopic hemostasis [161]. Clinical evidence for recurrent bleeding is commonly defined as follows: recurrent hematemesis or bloody nasogastric aspirate after index endoscopy; recurrent tachycardia or hypo-

Thieme

tension after achieving hemodynamic stability; melena and/or hematochezia following normalization of stool color; or a reduction in hemoglobin ≥ 2 g/dL after a stable hemoglobin value has been attained [1, 15, 33].

In the management of patients with recurrent peptic ulcer bleeding after successful initial endoscopic control, an RCT comparing repeat endoscopic therapy with surgery showed that 35/48 (73%) of patients randomized to endoscopic retreatment had long-term control of their peptic ulcer bleeding, avoided surgery, and had a lower rate of adverse events as compared to the surgery-treated patients. The remaining 13 patients underwent salvage surgery because of failed repeat endoscopic hemostasis (n=11) or perforation due to contact thermal therapy (n=2). It is generally recommended that patients with clinical evidence of recurrent bleeding undergo repeat endoscopy and further endoscopic treatment if indicated [162].

ESGE suggests the use of either a cap-mounted clip or a topical hemostasis spray/powder when there is recurrent bleeding and standard endoscopic treatments fail to control the bleeding. As previously detailed, limited RCT data suggest cap-mounted clipping may become the first-line hemostasis therapy in recurrent peptic ulcer hemorrhage [146].

In registries and case series, the success rate of primary hemostasis with the use of a topical hemostasis powder approaches 95%. In the GRAPHE (Groupe de Recherche Avancé des Praticiens Hospitaliers en Endoscopie) registry, which included 202 patients with various upper GI bleeding etiologies (peptic ulcer in 75 patients [37.1%], tumor in 61 [30.2%], postendoscopic therapy in 35 [17.3%], or other in 31 [15.3%]), the primary hemostasis success rate using a topical powder (TC-325) was 96.5% [163]. The topical powder was used as a salvage therapy in 108 patients (53.5%). The rate of further bleeding was high, 26.7% by day 8 and 33.5% by day 30. In a Spanish multicenter retrospective study of 261 patients, of whom 219 (83.9%) presented with acute UGIH (most common causes were peptic ulcer [28%], malignancy [18.4%], and therapeutic endoscopy-related GIB [17.6%]), TC-325 was used as rescue therapy in 191 patients (73.2%) with a primary hemostasis success rate of 93.5% (95%CI 90%-96%). Failure at post-endoscopy days 3, 7, and 30 was 21.1%, 24.6%, and 27.4%, respectively [164]. It must be noted that following successful application of a topical hemostatic powder such as TC-325, a follow-up treatment plan is required (e.g. second-look endoscopy or referral for TAE).

There is some evidence from an RCT that in patients predicted to be at high risk of further peptic ulcer bleeding following endoscopic hemostasis, prophylactic TAE may reduce recurrent bleeding [165]. In a subgroup analysis, prophylactic TAE in patients with ulcers 15 mm or more in size significantly reduced the rebleeding risk from 12/52 (23.1%) to 2/44 (4.5%) (P= 0.027). The number needed to treat with prophylactic TAE to prevent one ulcer rebleed was 5.

Helicobacter pylori

RECOMMENDATION

ESGE recommends, in patients with NVUGIH secondary to peptic ulcer, investigation for the presence of *Helicobacter pylori* in the acute setting (at index endoscopy) with initiation of appropriate antibiotic therapy when *H. pylori* is detected.

Strong recommendation, high quality evidence.

RECOMMENDATION

ESGE recommends re-testing for *H. pylori* in those patients with a negative test at index endoscopy. Strong recommendation, high quality evidence.

RECOMMENDATION

ESGE recommends documentation of successful *H. pylori* eradication.

Strong recommendation, high quality evidence.

The value and cost–effectiveness of *H. pylori* eradication in patients with peptic ulcer bleeding is well established [166–168]. An updated Cochrane database systematic review, including 55 RCTs, that evaluated the benefits of eradication therapy in *H. pylori*-associated peptic ulcer was published by Ford and colleagues [169]. In duodenal ulcers, eradication therapy was found superior to both ulcer-healing drugs and no treatment. Furthermore, eradication therapy prevented recurrence of both gastric and duodenal ulcers more effectively compared to no treatment. However, results of this systematic review did not demonstrate superiority of eradication therapy in gastric ulcer healing and prevention of duodenal ulcer recurrence compared to ulcer-healing medications.

The consequences of delayed testing for H. pylori and initiation of eradication therapy in patients with peptic ulcer hemorrhage have been highlighted by several retrospective studies [170-172]. In the first study, a total of 1920 patients with peptic ulcer hemorrhage were classified into two groups depending on the time of initial eradication therapy administration after ulcer diagnosis. Results revealed that the late eradication group (with late being defined as a time lag ≥ 120 days after initial diagnosis) had an increased risk of re-hospitalization due to complicated recurrent ulcer compared to patients receiving earlier eradication therapy (HR 1.52, 95%CI 1.13-2.04; P= 0.006) [170]. Another study of 830 peptic ulcer hemorrhage patients similarly displayed that adherence to the recommended H. pylori testing strategy (endoscopic biopsy, stool antigen testing or serology for H. pylori within 60 days of index endoscopy) correlated with a lower risk of hospital ICU admission (90% of non-ICU patients tested vs. 66% of ICU patients, P< 0.001; adjusted OR 0.42, 95%CI 0.27-0.66) and a decreased compound risk of rebleeding or mortality 14-365 days after index endoscopy (22 % vs. 47 %, P<0.01; adjusted HR 0.49, 95 % CI 0.36-0.67) [171]. However, delay in initiation of H. pylori eradication therapy, starting even from 8-30 days after peptic ulcer diagnosis, may time-dependently increase the risks of recurrence and development of a complicated ulcer, as shown by a nationwide population-based study including 29 032 patients [172]. Initiation of eradication therapy within 8–30, 31–60, 61– 365, and >365 days of diagnosis was compared to immediate treatment within 7 days. Adjusted HRs for ulcer recurrence were 1.17 (95%CI 1.08-1.25), 2.37 (95%CI 2.16-2.59), 2.96 (95%CI 2.76-3.16), and 3.55 (95%CI 3.33-3.79), respectively, while HRs for complicated ulcer were 1.55 (95%CI 1.35-1.78), 3.19 (95%CI 2.69-3.78), 4.00 (95%CI 3.51-4.55), and 6.14 (95%CI 5.47-6.89), respectively. These results reaffirm the current view that testing for H. pylori and subsequent initiation of eradication therapy in the case of detection, should be performed as soon as possible in all patients presenting with acute NVUGIH secondary to peptic ulcer.

The higher rates of false-negative results linked to H. pylori testing in the acute setting (at index endoscopy) of NVUGIH constitutes an obstacle to the implementation of this testing strategy [173]. It is therefore advisable to repeat diagnostic testing in patients with an initially negative H. pylori test, within 4 weeks of the acute bleeding episode [174]. Interestingly, no recent meta-analyses or RCTs further examining either the diagnostic performance of testing in the acute setting or the concept of re-testing after the bleeding event, have been published. Re-testing for H. pylori is further supported only by the results of a 2014 prospective cohort study including 374 patients, in which retesting provided an additional diagnostic yield of 12.5% (11 patients newly positive during delayed testing out of 88 initially negative patients, who repeated testing either through endoscopy or urea breath testing) [175]. Nevertheless, current evidence substantively justifies both the value of H. pylori testing in the acute setting as well as the role of delayed testing in minimizing the underestimation of H. pylori prevalence in peptic ulcer hemorrhage.

Dual antiplatelet therapy and PPI co-therapy

RECOMMENDATION

ESGE recommends that in patients who have had acute NVUGIH and require ongoing dual antiplatelet therapy (DAPT), PPI should be given as co-therapy.

Strong recommendation, moderate quality evidence.

Dual antiplatelet therapy (DAPT), combining low dose aspirin and a P2Y12 platelet receptor inhibitor (e.g., clopidogrel), is the cornerstone of management of patients with acute coronary syndromes and following coronary stent placement, but is associated with an increased risk of GI bleeding. PPIs substantially reduce this risk and their use as co-therapy with DAPT is recommended in patients with a previous GI bleeding event [1,176–178]. Previous pharmacodynamic studies reported that the co-administration of PPIs with clopidogrel may reduce platelet inhibition, yet there is no high level evidence support-

ing the clinical significance of this interaction [179–181]. A recent meta-analysis again showed no significant difference between patients using clopidogrel alone and patients receiving the combination of clopidogrel and a PPI (n=11770), for all-cause mortality (OR 0.91, 95%CI 0.58–1.40; P=0.66), acute coronary syndrome (OR 0.96, 95%CI 0.88–1.05; P=0.35), myocardial infarction (OR 1.05, 95%CI 0.86–1.28; P=0.65), or cerebrovascular accident (OR 1.47, 95%CI 0.660–3.25; P=0.34) [182]. Moreover, the incidence of GI bleeding was significantly decreased in the group of patients who received PPI co-therapy (OR 0.24, 95% CI 0.09–0.62; P=0.003).

Restarting anticoagulation therapy (VKAs, DOACs)

RECOMMENDATION

ESGE recommends that, in patients who require ongoing anticoagulation therapy following acute NVUGIH (e.g., peptic ulcer hemorrhage), anticoagulation should be resumed as soon as the bleeding has been controlled, preferably within or soon after 7 days of the bleeding event, based on thromboembolic risk. The rapid onset of action of direct oral anticoagulants (DOACs), as compared to vitamin K antagonists (VKAs), must be considered in this context.

Strong recommendation, low quality evidence.

RECOMMENDATION

ESGE recommends PPIs for gastroduodenal prophylaxis in patients requiring ongoing anticoagulation and with a history of NVUGIH.

Strong recommendation, low quality evidence.

There is only limited evidence to guide restarting anticoagulation therapy (e.g., VKAs, DOACs) following NVUGIH (e.g., peptic ulcer hemorrhage). The decision to restart anticoagulation therapy must balance the risk of recurrent bleeding with the risk of a thromboembolic event and/or the sequelae of these events, including death. Retrospective, observational studies have shown that resuming anticoagulation in patients following a GI bleed is associated with a lower risk of thrombosis and death [183-185] but a small increase in nonfatal GI bleeding events [34, 186]. Sostres et al. reported on 871 patients with GI bleeding, 25% with peptic ulcer hemorrhage, while taking antithrombotic medications (38.9% anticoagulants, 52.5% antiplatelets, and 8.6% both) [34]. Over an extended follow-up period (mean 24.9 months), the authors concluded that resumption of either antiplatelet or anticoagulant therapy (mean [standard deviation] 7.3 [5.9] days, median 5 days) was associated with a higher risk of rebleeding, yet a lower risk of ischemic events or death. Moreover, when compared to late resumption, earlier resumption of antithrombotic therapy (≤7 days) following the GI bleeding episode, was associated with a significantly lower rate of ischemic events (13.6% vs. 20.4%, P=0.025; adjusted HR 0.718, 95%CI 0.487-1.061) and

Thieme

a significantly higher rate of recurrent GI bleeding (30.6% vs. 23.1%, P=0.044; adjusted HR 1.383, 95%CI 1.001-1.910). A systematic review suggested that anticoagulation can be restarted between 7 and 15 days following the GI bleed event [187]. A risk modelling analysis, based on 121/207 patients (58.5%) who restarted VKAs after an upper GI bleed, suggested that the optimal timing for the resumption of anticoagulation appears to be between 3-6 weeks after the index bleeding event, but that the decision must take into account thromboembolic risk and patient values and preferences [188]. In patients at high thrombotic risk for whom early resumption of anticoagulation within the first week following an acute bleeding event may be appropriate, bridging therapy using unfractionated or low molecular weight heparin should be considered. (Patients at high thrombotic risk include those with chronic atrial fibrillation with a previous embolic event; CHADS2 ≥3 [risk score including congestive heart failure, hypertension, age ≥75 years, diabetes mellitus, and previous stroke or transient ischemic attack]; mechanical prosthetic heart valve; recent deep venous thrombosis or pulmonary embolism [within past 3 months]; or with known severe hypercoagulable state.) This decision should be multidisciplinary involving a cardiologist and/or a hematologist. VKAs should be restarted earlier, as a loading dose is required and these medications take longer to achieve their anticoagulation effect.

Some experts suggest that a DOAC with less bleeding risk or a VKA with tight INR control should be prescribed. In an observational cohort study on post-hemorrhage anticoagulation resumption in patients with atrial fibrillation, the incidence of major recurrent bleeding was higher for patients on warfarin than for those on dabigatran (HR 2.31, 95%CI 1.19–4.76) [189]. In the ARISTOTLE (Apixaban for the Prevention of Stroke in Subjects with Atrial Fibrillation) trial, the rate of major bleeding was 2.13% per year with the use of apixaban and 3.09% with that of warfarin (HR 0.69, 95%CI 0.60–0.80; P<0.001) [190]. However, no firm conclusion can be made as there is no direct comparison of DOACs or warfarin in patients after a major GI bleeding event.

The precise timing for restarting anticoagulation in patients who require anticoagulant therapy and who have had acute NVUGIH (e.g., peptic ulcer hemorrhage) remains undefined. However, evidence supports resuming anticoagulation within 7 days, provided that the GI bleeding has been controlled. In this context, clinicians must balance the thrombotic risk with the bleeding risk. Those patients at the highest thrombotic risk should restart anticoagulant therapy as soon as possible and the use of subcutaneous low molecular weight heparin as a bridge to oral anticoagulation may be a good option. Early consultation with a cardiologist and/or hematologist is desirable. It should be remembered that the timing for resumption of VKA is different from that for DOACs. Vitamin K antagonists should be started earlier since the time required to achieve adequate anticoagulation is much longer (up to 5 days) compared to that for DOACs which take only hours. The use of validated clinical prediction scores that estimate thrombotic risk (CHA(2)DS(2)-VASc) and bleeding risk (HAS-BLED) can be used to help guide clinicians in their decision making (► Fig. 2) [191–193].

Use of PPI in patients taking anticoagulants

The evidence for the protective effect of PPI in patients taking anticoagulants is limited. Unlike aspirin, anticoagulants do not cause mucosal breaks or ulcers, but they increase the risk of bleeding from pre-existing mucosal lesions or those induced by other agents or pathogenic mechanisms. Epidemiological studies have reported conflicting results [194-198]. However, we recommend the use of PPI in patients who require ongoing anticoagulation and have a history of previous peptic ulcer hemorrhage. This should be exclusive to patients who need to take anticoagulants and other gastrotoxic drugs such as nonsteroidal anti-inflammatory drugs (NSAIDs) or aspirin [198]. The recent COMPASS (Rivaroxaban for the Prevention of Major Cardiovascular Events in Coronary or Peripheral Artery Disease) trial suggested that PPIs do not prevent gastrointestinal bleeding in patients receiving anticoagulants [199]. Patients with stable cardiovascular diseases were randomized to receive rivaroxaban (2.5 mg twice-daily) plus aspirin (100 mg once-daily), or rivaroxaban (5 mg twice daily) with an aspirin-matched placebo once-daily, or aspirin (100 mg once-daily) with a rivaroxaban-matched placebo (twice-daily). These patients were then further randomized to receive 40 mg pantoprazole or a placebo. There was no significant difference in upper GI events between the pantoprazole group 102/8791 (1.2%) and the placebo group 116/8807 (1.3%) (HR 0.88, 95%CI 0.67-1.15). However, there were fewer occurrences of symptomatic gastroduodenal ulcers and acid-peptic related complications with the use of pantoprazole (8 vs. 17; HR 0.47, 95%CI 0.20-1.09). In a retrospective Chinese cohort study (n = 5041), the use of PPI was associated with a reduced risk of GI bleeding in patients taking dabigatran and only in those with a prior history of peptic ulcer/ GI bleed (incidence rate ratio [IRR] 0.14, 95%CI 0.06-0.30) [200]. Risk factors for developing GI bleeding were patient age of 75 years or older, history of peptic ulcer/GI bleed and concomitant use of aspirin.

Disclaimer

The legal disclaimer for ESGE guidelines [4] applies to this Guideline.

Acknowledgments

ESGE wishes to thank external reviewers, Professor Alan N. Barkun of McGill University, Montreal, Canada, and Professor Philip Chiu of The Chinese University of Hong Kong for their critical review and appraisal of this guideline.

Competing interests

N. de Groot has worked with the NUMDL group on a national guideline on GI bleeding (January to June 2017). M. Dinis-Ribeiro has provided consultancy to Medtronic (October 2020); he is a Co-Editor-in-Chief of the journal *Endoscopy*. I.M. Gralnek is a consultant to Boston Scien-

tific, Medtronic, Motus GI, Vifor Pharma, Simbionix, and Neurogastrx; he is also on the medical advisory board of Motus GI and has received research funding from them and from OnePass, AstraZeneca and CheckCap; he has also been a speaker for Vifor Pharma and 3D Matrix. A. Lanas has provided consultancy to Bayer AG (2018 to 2020). A.J. Morris serves on an advisory board for Medtronic (October 2020, ongoing); he is an unpaid committee member and a guideline lead for the British Society of Gastroenterology (BSG); he has received a fee for a commissioned article in Medicine International journal (2019). I.S. Papanikolaou has received a consultancy fee from Boston Scientific (25 January 2018 and 21 October 2018); he has received travel grants from Takeda Hellas (10-13 October 2019 and 3-6 December 2020). F. Radaelli has served on an advisory board and been a speaker for Pfizer/BMS (2019 to 2020); he has been a speaker for Boehringer Ingelheim (2019 to 2020). A. Sanchez-Yague has received consultancy fees from Boston Scientific (2017 to 2019). J.E. van Hooft has received lecture fees from Medtronic (2014 to 2015, 2019) and Cook Medical (2019), and consultancy fees from Boston Scientific (2014 to 2017); her department has received research grants from Cook Medical (2014 to 2019), and Abbott (2014 to 2017). H. Awadie, G. Braun, M. Camus, T. Cúrdia Gonçalves, J. Lau, S.B. Laursen, Z. Neeman, A.J. Stanley, and M. Udd declare no competing interests.

References

- Oakland K. Changing epidemiology and etiology of upper and lower gastrointestinal bleeding. Best Pract Res Clin Gastroenterol 2019; 42/ 43: 1-6
- [2] Gralnek IM, Dumonceau JM, Kuipers EJ et al. Diagnosis and management of nonvariceal upper gastrointestinal hemorrhage: European Society of Gastrointestinal Endoscopy (ESGE) Guideline. Endoscopy 2015: 47: 1–46
- [3] Guyatt GH, Oxman AD, Vist GE et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008; 336: 924–926
- [4] Hassan C, Ponchon T, Bisschops R et al. European Society of Gastrointestinal Endoscopy (ESGE) Publications Policy – Update 2020. Endoscopy 2020; 52: 123–126
- [5] Baradarian R, Ramdhaney S, Chapalamadugu R et al. Early intensive resuscitation of patients with upper gastrointestinal bleeding decreases mortality. Am | Gastroenterol 2004; 99: 619–622
- [6] Lu B, Li MQ, Li JQ. The use of limited fluid resuscitation and blood pressure-controlling drugs in the treatment of acute upper gastrointestinal hemorrhage concomitant with hemorrhagic shock. Cell Biochem Biophys 2015; 72: 461–463
- [7] Kwan I, Bunn F, Chinnock P et al. Timing and volume of fluid administration for patients with bleeding. Cochrane Database Syst Rev 2014: CD002245
- [8] Duan C, Li T, Liu L. Efficacy of limited fluid resuscitation in patients with hemorrhagic shock: a meta-analysis. Int J Clin Exp Med 2015; 8: 11645–11656
- [9] Carrick MM, Morrison CA, Tapia NM et al. Intraoperative hypotensive resuscitation for patients undergoing laparotomy or thoracotomy for trauma: Early termination of a randomized prospective clinical trial. J Trauma Acute Care Surg 2016; 80: 886–896
- [10] Lewis SR, Pritchard MW, Evans DJ et al. Colloids versus crystalloids for fluid resuscitation in critically ill people. Cochrane Database Syst Rev 2018: 8: CD000567
- [11] Hammond DA, Lam SW, Rech MA et al. Balanced crystalloids versus saline in critically ill adults: a systematic review and meta-analysis. Ann Pharmacother 2020; 54: 5–13

- [12] Semler MW, Self WH, Wanderer JP et al. Balanced crystalloids versus saline in critically ill adults. N Engl J Med 2018; 378: 829–839
- [13] Villanueva C, Colomo A, Bosch A et al. Transfusion strategies for acute upper gastrointestinal bleeding. N Engl J Med 2013; 368: 11–21
- [14] Jairath V, Kahan BC, Gray A et al. Restrictive versus liberal blood transfusion for acute upper gastrointestinal bleeding (TRIGGER): a pragmatic, open-label, cluster randomised feasibility trial. Lancet Lond Engl 2015; 386: 137–144
- [15] Barkun AN, Almadi M, Kuipers EJ et al. Management of nonvariceal upper gastrointestinal bleeding: guideline recommendations from the international consensus group. Ann Intern Med 2019; 171: 805– 822
- [16] Odutayo A, Desborough MJR, Trivella M et al. Restrictive versus liberal blood transfusion for gastrointestinal bleeding: a systematic review and meta-analysis of randomised controlled trials. Lancet Gastroenterol Hepatol 2017; 2: 354–360
- [17] Carson JL, Stanworth SJ, Roubinian N et al. Transfusion thresholds and other strategies for guiding allogeneic red blood cell transfusion. Cochrane Database Syst Rev 2016; 10: CD002042
- [18] Docherty AB, O'Donnell R, Brunskill S et al. Effect of restrictive versus liberal transfusion strategies on outcomes in patients with cardiovascular disease in a non-cardiac surgery setting: systematic review and meta-analysis. BMJ 2016; 352: i1351
- [19] Blatchford O, Murray WR, Blatchford M. A risk score to predict need for treatment for upper-gastrointestinal haemorrhage. Lancet 2000; 356: 1318–1321
- [20] Rockall TA, Logan RF, Devlin HB et al. Risk assessment after acute upper gastrointestinal haemorrhage. Gut 1996; 38: 316–321
- [21] Saltzman JR, Tabak YP, Hyett BH et al. A simple risk score accurately predicts in-hospital mortality, length of stay, and cost in acute upper GI bleeding. Gastrointest Endosc 2011; 74: 1215–1224
- [22] Laursen SB, Dalton HR, Murray IA et al. Performance of new thresholds of the Glasgow Blatchford score in managing patients with upper gastrointestinal bleeding. Clin Gastroenterol Hepatol 2015; 13: 115– 121
- [23] Ramaekers R, Mukarram M, Smith CAM et al. The predictive value of pre-endoscopic risk scores to predict adverse outcomes in emergency department patients with upper gastrointestinal bleeding: a systematic review. Acad Emerg Med 2016; 23: 1218–1227
- [24] Stanley AJ, Laine L, Dalton HR et al. International gastrointestinal bleeding consortium. comparison of risk scoring systems for patients presenting with upper gastrointestinal bleeding: international multicentre prospective study. BMJ 2017; 356: i6432
- [25] Stanley AJ, Ashley D, Dalton HR et al. Outpatient management of patients with low-risk upper-gastrointestinal haemorrhage: multicentre validation and prospective evaluation. Lancet 2009; 373: 42–47
- [26] Girardin M, Bertolini D, Ditisheim S et al. Use of Glasgow-Blatchford bleeding score reduces hospital stay duration and costs for patients with low-risk upper GI bleeding. Endosc Int Open 2014; 2: E74–E79
- [27] Sung JJY, Lau JYW, Ching JYL et al. Continuation of low dose aspirin therapy in peptic ulcer bleeding: a randomized trial. Ann Intern Med 2010; 152: 1–9
- [28] Derogar M, Sandblom G, Lundell L et al. Discontinuation of low dose aspirin therapy after peptic ulcer bleeding increases risk of death and acute cardiovascular events. Clin Gastroenterol Hepatol 2013; 11: 38–42
- [29] Kim SY, Hyun JJ, Suh SJ et al. Risk of vascular thrombotic events following discontinuation of anti-thrombotics after peptic ulcer bleeding. J Clin Gastroenterol 2016; 50: e40–e44

- [30] Wang XX, Dong B, Hong B et al. Long-term prognosis in patients continuing taking anti-thrombotics after peptic ulcer bleeding. World | Gastroenterol 2017; 23: 723–729
- [31] Siau K, Hannah JL, Hodson J et al. Stopping antithrombotic therapy after acute upper gastrointestinal bleeding is associated with reduced survival. Postgrad Med J 2018; 94: 137–142
- [32] Burger W, Chemnitius JM, Kneissl GD et al. Low-dose aspirin for secondary cardiovascular prevention – cardiovascular risks after its perioperative withdrawal versus bleeding risks with its continuation – review and meta-analysis. | Intern Med 2005; 257: 399–414
- [33] Sung JJ, Chiu PW, Chan FKL et al. Asia-Pacific working group consensus on non-variceal upper gastrointestinal bleeding: an update 2018. Gut 2018; 67: 1757–1768
- [34] Sostres C, Marcén B, Laredo V et al. Risk of rebleeding, vascular events and death after gastrointestinal bleeding in anticoagulant and/or antiplatelet users. Aliment Pharmacol Ther 2019; 50: 919–929
- [35] Patrono C, Morais J, Baigent C et al. Antiplatelet agents for the treatment and prevention of coronary atherothrombosis. J Am Coll Cardiol 2017; 70: 1760–1776
- [36] Eisenberg MJ, Richard PR, Libersan D et al. Safety of short-term discontinuation of antiplatelet therapy in patients with drug-eluting stents. Circulation 2009; 119: 1634–42
- [37] Ramos GP, Binder M, Hampel P et al. Outcomes of endoscopic intervention for overt GI bleeding in severe thrombocytopenia. Gastrointest Endosc 2018; 88: 55–61
- [38] Zakko L, Rustagi T, Douglas M et al. No benefit from platelet transfusion for gastrointestinal bleeding in patients taking antiplatelet agents. Clin Gastroenterol Hepatol 2017; 15: 46–52
- [39] Bennett C, Klingenberg SL, Langholz E, Gluud LL. Tranexamic acid for upper gastrointestinal bleeding. Cochrane Database of Systematic Reviews 2014; 11: doi:10.1002/14651858.CD006640.pub3
- [40] Stollings JL, Landsperger JS, Semler MW et al. Tranexamic acid for refractory gastrointestinal bleeds: A cohort study. J Crit Care 2018; 43: 128–132
- [41] Tavakoli N, Mokhtare M, Agah S et al. Comparison of the efficacy of intravenous tranexamic acid with and without topical administration versus placebo in urgent endoscopy rate for acute gastrointestinal bleeding: A double-blind randomized controlled trial. United European Gastroenterol | 2018: 646–654
- [42] Twum-Barimah E, Abdelgadir I, Gordon M et al. Systematic review with meta-analysis: the efficacy of tranexamic acid in upper gastrointestinal bleeding. Aliment Pharmacol Ther 2020; 51: 1004–1013
- [43] Roberts I, Shakur-Still H, Afolabi A et al. Effects of a high-dose 24-h infusion of tranexamic acid on death and thromboembolic events in patients with acute gastrointestinal bleeding (HALT-IT): an international randomised, double-blind, placebo-controlled trial. Lancet 2020; 395: 1927–1936
- [44] Lanas A, Dumonceau JM, Hunt RH et al. Non-variceal upper gastrointestinal bleeding. Nat Rev Dis Primers 2018; 4: 18020 doi:10.1038/ nrdp.2018.20
- [45] Lanas-Gimeno A, Lanas A. Risk of gastrointestinal bleeding during anticoagulant treatment. Expert Opin Drug Saf 2017; 16: 673–685
- [46] Choudari CP, Rajgopal C, Palmer KR. Acute gastrointestinal haemorrhage in anticoagulated patients: diagnoses and response to endoscopic treatment. Gut 1994; 35: 464–466
- [47] Rubin TA, Murdoch M, Nelson DB. Acute GI bleeding in the setting of supratherapeutic international normalized ratio in patients taking warfarin: endoscopic diagnosis, clinical management, and outcomes. Gastrointest Endosc 2003; 58: 369–373

- [48] Wolf AT, Wasan SK, Saltzman JR. Impact of anticoagulation on rebleeding following endoscopic therapy for nonvariceal upper gastrointestinal hemorrhage. Am J Gastroenterol 2007; 102: 290–296
- [49] Nagata N, Sakurai T, Moriyasu S et al. Impact of INR monitoring, reversal agent use, heparin bridging, and anticoagulant interruption on rebleeding and thromboembolism in acute gastrointestinal bleeding. PLoS One 2017; 12: e0183423
- [50] Sarode R, Milling TJJr., Refaai MA et al. Efficacy and safety of a 4-factor prothrombin complex concentrate in patients on vitamin K antagonists presenting with major bleeding: a randomized, plasma-controlled, phase IIIb study. Circulation 2013; 128: 1234–1243
- [51] Goldstein JN, Refaai MA, Milling TJJr. et al. Four-factor prothrombin complex concentrate versus plasma for rapid vitamin K antagonist reversal in patients needing urgent surgical or invasive interventions: a phase 3b, open-label, non-inferiority, randomised trial. Lancet 2015: 385: 2077–2087
- [52] Shim CN, Chung HS, Park JC et al. Is endoscopic therapy safe for upper gastrointestinal bleeding in anticoagulated patients with supratherapeutic international normalized ratios? Am J Ther 2016; 23: e995– e1003
- [53] Peloquin JM, Seraj SM, King LY et al. Diagnostic and therapeutic yield of endoscopy in patients with elevated INR and gastrointestinal bleeding. Am J Med 2016; 129: 628–634
- [54] Holbrook A, Schulman S, Witt DM et al. Evidence-based management of anticoagulant therapy: Antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012; 141: e1525–184S
- [55] Sin JH, Berger K, Lesch CA. Four-factor prothrombin complex concentrate for life-threatening bleeds or emergent surgery: A retrospective evaluation. J Crit Care 2016; 36: 166–172
- [56] Subramaniam K, Spilsbury K, Ayonrinde OT et al. Red blood cell transfusion is associated with further bleeding and fresh-frozen plasma with mortality in nonvariceal upper gastrointestinal bleeding. Transfusion 2016; 56: 816–826
- [57] Fabricius R, Svenningsen P, Hillingsø J et al. Effect of transfusion strategy in acute non-variceal upper gastrointestinal bleeding: a nationwide study of 5861 hospital admissions in Denmark. World J Surg 2016; 40: 1129–36
- [58] Karaca MA, Erbil B, Ozmen MM. Use and effectiveness of prothrombin complex concentrates vs fresh frozen plasma in gastrointestinal hemorrhage due to warfarin usage in the ED. Am J Emerg Med 2014; 32: 660–664
- [59] Zatta A, McQuilten Z, Kandane-Rathnayake R et al. The Australian and New Zealand Haemostasis Registry: ten years of data on off-licence use of recombinant activated factor VII. Blood Transfus 2015; 13: 86–99
- [60] Liesenfeld KH, Gruenenfelder F, Clemens A. Enhanced elimination of dabigatran: Identifying the appropriate patient for the use of continuous venovenous hemodialysis instead of intermittent hemodialysis – A simulation analysis. J Clin Pharmacol 2016; 56: 597–608
- [61] Dager WE, Banares L. Reversing the anticoagulation effects of dabigatran. Hosp Pract 2017; 45: 29–38
- [62] Schulman S, Ritchie B, Nahirniak S et al. Reversal of dabigatranassociated major bleeding with activated prothrombin concentrate: A prospective cohort study. Thromb Res 2017; 152: 44–48
- [63] Pollack CV, Reilly PA, van Ryn J et al. Idarucizumab for dabigatran reversal – full cohort analysis. N Engl J Med 2017; 377: 431–441
- [64] Deutsch D, Boustiere C, Ferrari E et al. Direct oral anticoagulants and digestive bleeding: therapeutic management and preventive measures. Therap Adv Gastroenterol 2017; 10: 495–505
- [65] Heidbuchel H, Verhamme P, Alings M et al. Updated European Heart Rhythm Association practical guide on the use of non-vitamin-K antagonist anticoagulants in patients with non-valvular atrial fibrillation: Executive summary. Eur Heart J 2017; 38: 2137–2149

- [66] Connolly SJ, Milling TJ, Eikelboom JW et al. Andexanet alfa for acute major bleeding associated with factor Xa inhibitors. N Engl J Med 2016; 375: 1131–1141
- [67] Ansell JE, Bakhru SH, Laulicht BE et al. Single-dose ciraparantag safely and completely reverses anticoagulant effects of edoxaban. Thromb Haemost 2017; 117: 238–245
- [68] Sreedharan A, Martin J, Leontiadis GI et al. Proton pump inhibitor treatment initiated prior to endoscopic diagnosis in upper gastrointestinal bleeding. Cochrane Database Syst Rev 2010; 7: CD005415
- [69] Barkun AN, Bardou M, Kuipers EJ et al. International consensus recommendations on the management of patients with nonvariceal upper gastrointestinal bleeding. Ann Intern Med 2010; 152: 101–13
- [70] Siau K, Hearnshaw S, Stanley AJ et al. British Society of Gastroenterology (BSG)-led Multisociety consensus care bundle for the early clinical management of acute upper gastrointestinal bleeding. Frontline Gastroenterol 2020; 11: 311–323
- [71] Raptis S, Dollinger HC, von Berger L et al. Effects of somatostatin on gastric secretion and gastrin release in man. Digestion 1975; 13: 15– 26
- [72] Riha HM, Wilkinson R, Twilla J et al. Octreotide added to a proton pump inhibitor versus a proton pump inhibitor alone in nonvariceal upper-gastrointestinal bleeds. Ann Pharmacother 2019; 53: 794–800
- [73] Kessel B, Olsha O, Younis A et al. Evaluation of nasogastric tubes to enable differentiation between upper and lower gastrointestinal bleeding in unselected patients with melena. Eur J Emerg Med 2016; 23: 71–73
- [74] Machlab S, Garcia-Iglesias P, Martinez-Bauer E et al. Diagnostic utility of nasogastric tube aspiration and the ratio of blood urea nitrogen to creatinine for distinguishing upper and lower gastrointestinal tract bleeding. Emergencias 2018; 30: 419–423
- [75] Rockey DC, Ahn C, de Melo SW. Randomized pragmatic trial of nasogastric tube placement in patients with upper gastrointestinal tract bleeding. | Investig Med 2017; 65: 759–764
- [76] Chaudhuri D, Bishay K, Tandon P et al. Prophylactic endotracheal intubation in critically ill patients with upper gastrointestinal bleed: a systematic review and meta-analysis. JGH Open 2019: doi:10.1002/ jgh3.12195
- [77] Alshamsi F, Jaeschke R, Baw B et al. Prophylactic endotracheal intubation in patients with upper gastrointestinal bleeding undergoing endoscopy: a systematic review and meta-analysis. Saudi J Med Med Sci 2017; 5: 201–209
- [78] Almashhrawi AA, Rahman R, Jersak ST et al. Prophylactic tracheal intubation for upper GI bleeding: a meta-analysis. World J Metaanal 2015; 3: 4–10
- [79] Perisetti A, Kopel J, Shredi A et al. Prophylactic pre-esophagogastroduodenoscopy tracheal intubation in patients with upper gastrointestinal bleeding. Proc (Bayl Univ Med Cent) 2019; 32: 22–25
- [80] Enestvedt BK, Gralnek IM, Mattek N et al. An evaluation of endoscopic indications and findings related to non-variceal upper-GI hemorrhage in a large multicenter consortium. Gastrointest Endosc 2008; 67: 422–429
- [81] Hearnshaw SA, Logan RF, Lowe D et al. Use of endoscopy for management of acute upper gastrointestinal bleeding in the UK: results of a nationwide audit. Gut 2010; 59: 1022–1029
- [82] Bai Y, Guo JF, Li ZS. Meta-analysis: erythromycin before endoscopy for acute upper gastrointestinal bleeding. Aliment Pharmacol Ther 2011; 34: 166–171
- [83] Szary NM, Gupta R, Choudhary A et al. Erythromycin prior to endoscopy in acute upper gastrointestinal bleeding: a meta-analysis. Scand J Gastroenterol 2011; 46: 920–924
- [84] Theivanayagam S, Lim RG, Cobell WJ et al. Administration of erythromycin before endoscopy in upper gastrointestinal bleeding: a meta-

- analysis of randomized controlled trials. Saudi J Gastroenterol 2013; 19: 205–210
- [85] Barkun AN, Bardou M, Martel M et al. Prokinetics in acute upper GI bleeding: a meta-analysis. Gastrointest Endosc 2010; 72: 1138–1145
- [86] Rahman R, Nguyen DL, Sohail U et al. Pre-endoscopic erythromycin administration in upper gastrointestinal bleeding: an updated metaanalysis and systematic review. Ann Gastroenterol 2016; 29: 312–317
- [87] Winstead NS, Wilcox CM. Erythromycin prior to endoscopy for acute upper gastrointestinal haemorrhage: a cost–effectiveness analysis. Aliment Pharmacol Ther 2007; 26: 1371–1377
- [88] Gomes T, Mamdani MM, Juurlink DN. Macrolide-induced digoxin toxicity: a population-based study. Clin Pharmacol Ther 2009; 86: 383–386
- [89] Rowan C, Brinker AD, Nourjah P et al. Rhabdomyolysis reports show interaction between simvastatin and CYP3A4 inhibitors. Pharmacoepidemiol Drug Saf 2009; 18: 301–309
- [90] Alexandrino G, Domingues TD, Carvalho R et al. Endoscopy in patients with acute upper gastrointestinal bleeding. Clin Endosc 2019; 52: 47– 52
- [91] Ahn DW, Park YS, Lee SH et al. Clinical outcome of acute nonvariceal upper gastrointestinal bleeding after hours: the role of urgent endoscopy. Korean J Intern Med 2016; 31: 470–478
- [92] Garg SK, Anugwom C, Campbell J et al. Early esophagogastroduodenoscopy in upper gastrointestinal bleeding: a nationwide study. Endosc Int Open 2017; 5: E376–E386
- [93] Siau K, Hodson J, Ingram R et al. Time to endoscopy for acute upper gastrointestinal bleeding: results from a prospective multicentre trainee-led audit. United European Gastroenterol J 2019; 7: 199–209
- [94] Jeong N, Kim KS, Jung YS et al. Delayed endoscopy is associated with increased mortality in upper gastrointestinal hemorrhage. Am J Emerg Med 2019; 37: 277–280
- [95] Xia XF, Chiu PWY, Tsoi KKF et al. The effect of off-hours hospital admission on mortality and clinical outcomes for patients with upper gastrointestinal hemorrhage: a systematic review and meta-analysis of 20 cohorts. United European Gastroenterol J 2018; 6: 367–381
- [96] Cho SH, Lee YS, Kim YJ et al. Outcomes and role of urgent endoscopy in high-risk patients with acute nonvariceal gastrointestinal bleeding. Clin Gastroenterol Hepatol 2018; 16: 370–377
- [97] Kumar NL, Cohen AJ, Nayor J et al. Timing of upper endoscopy influences outcomes in patients with acute nonvariceal upper GI bleeding. Gastrointest Endosc 2017; 85: 945–952
- [98] Lau JYW, Yu Y, Tang RSY et al. Timing of endoscopy for acute upper gastrointestinal bleeding. N Engl J Med 2020; 382: 1299–1308
- [99] Laursen SB, Leontiadis GI, Stanley AJ et al. Relationship between timing of endoscopy and mortality in patients with peptic ulcer bleeding: a nationwide cohort study. Gastrointest Endosc 2017; 85: 936–944
- [100] Matsuura S, Sakata Y, Tsuruoka N et al. Outcomes of patients undergoing endoscopic hemostasis for the upper gastrointestinal bleeding were not influenced by the hospital emergency visits: a situation prevailing in Japan. Digestion 2018; 97: 260–266
- [101] Shih P, Liu S, Li S et al. Weekend effect in upper gastrointestinal bleeding: a systematic review and meta-analysis. PeerJ 2018; 6: e428
- [102] Forrest JA, Finlayson ND, Shearman DJ. Endoscopy in gastrointestinal bleeding. Lancet 1974; 2: 394–397
- [103] Elmunzer BJ, Young SD, Inadomi JM et al. Systematic review of the predictors of recurrent hemorrhage after endoscopic hemostatic therapy for bleeding peptic ulcers. Am J Gastroenterol 2008; 103: 2625–2632
- [104] Lau JY, Sung JJ, Chan AC et al. Stigmata of hemorrhage in bleeding peptic ulcers: an interobserver agreement study among international experts. Gastrointest Endosc 1997; 46: 33–36

- [105] Mondardini A, Barletti C, Rocca G et al. Non-variceal upper gastrointestinal bleeding and Forrest's classification: diagnostic agreement between endoscopists from the same area. Endoscopy 1998; 30: 508–512
- [106] Jensen DM, Eklund S, Persson T et al. Reassessment of rebleeding risk of Forrest IB (oozing) peptic ulcer bleeding in a large international randomized trial. Am J Gastroenterol 2017; 112: 441–446
- [107] Jensen DM, Ohning GV, Kovacs TO et al. Doppler endoscopic probe as a guide to risk stratification and definitive hemostasis of peptic ulcer bleeding. Gastrointest Endosc 2016; 83: 129–136
- [108] Camus M, Jensen DM, Kovacs TO et al. Independent risk factors of 30-day outcomes in 1,264 patients with peptic ulcer bleeding in the USA: large ulcers do worse. Aliment Pharmacol Ther 2016; 43: 1080–1089
- [109] Lolle I, Møller MH, Rosenstock SJ. Association between ulcer site and outcome in complicated peptic ulcer disease: a Danish nationwide cohort study. Scand J Gastroenterol 2016; 51: 1165–1171
- [110] Wong RC, Chak A, Kobayashi K et al. Role of Doppler US in acute peptic ulcer hemorrhage: can it predict failure of endoscopic therapy? Gastrointest Endosc 2000; 52: 315–321
- [111] Jensen DM, Kovacs TOG, Ohning GV et al. Doppler endoscopic probe monitoring of blood flow improves risk stratification and outcomes of patients with severe nonvariceal upper gastrointestinal hemorrhage. Gastroenterology 2017; 152: 1310–1318
- [112] Kantowski M, Schoepfer AM, Settmacher U et al. Assessment of endoscopic doppler to guide hemostasis in high risk peptic ulcer bleeding. Scand | Gastroenterol 2018; 53: 1311–1318
- [113] Barkun AN, Adam V, Wong RCK. Use of doppler probe in nonvariceal upper-gastrointestinal bleeding is less costly and more effective than standard of care. Clin Gastroenterol Hepatol 2019; 17: 2463– 2470
- [114] Marya NB, Jawaid S, Foley A et al. A randomized controlled trial comparing efficacy of early video capsule endoscopy with standard of care in the approach to non-hematemesis GI bleeding (with videos). Gastrointest Endosc 2019; 89: 33–43
- [115] Pérez-Cuadrado Robles EE, Bebia Conesa P, Esteban Delgado P et al. Emergency double-balloon enteroscopy combined with real-time viewing of capsule endoscopy: A feasible combined approach in acute overt-obscure gastrointestinal bleeding? Dig Endosc 2015; 27: 338–344
- [116] Schlag C, Menzel C, Nennstiel S et al. Emergency video capsule endoscopy in patients with acute severe GI bleeding and negative upper endoscopy results. Gastrointest Endosc 2015; 81: 889–895
- [117] Ching H, Hale MF, Sidhu R et al. Magnetically assisted capsule endoscopy in suspected acute upper GI bleeding versus esophagogastroduodenoscopy in detecting focal lesions. Gastrointest Endosc 2019; 90: 430–439
- [118] Schmidt A, Zimmermann M, Bauder M et al. Novel telemetric sensor capsule for EGD urgency triage: a feasibility study. Endosc Int Open 2019; 07: E774–E781
- [119] Laine L, McQuaid KR. Endoscopic therapy for bleeding ulcers: an evidence-based approach based on meta-analyses of randomized controlled trials. Clin Gastroenterol Hepatol 2009; 7: 33–47
- [120] Barkun AN, Martel M, Toubouti Y et al. Endoscopic hemostasis in peptic ulcer bleeding for patients with high-risk lesions: a series of meta-analyses. Gastrointest Endosc 2009; 69: 786–799
- [121] Sung JJ, Tsoi KK, Lai LH et al. Endoscopic clipping versus injection and thermo-coagulation in the treatment of non-variceal upper gastrointestinal bleeding: a meta-analysis. Gut 2007; 56: 1364–1373
- [122] Marmo R, Rotondano G, Piscopo R et al. Dual therapy versus monotherapy in the endoscopic treatment of high-risk bleeding ulcers: a meta-analysis of controlled trials. Am J Gastroenterol 2007; 102: 279–289

- [123] Vergara M, Bennett C, Calvet X et al. Epinephrine injection versus epinephrine injection and a second endoscopic method in high risk bleeding ulcers. Cochrane Database Syst Rev 2014; 10: CD005584
- [124] Baracat F, Moura E, Bernardo W et al. Endoscopic hemostasis for peptic ulcer bleeding: systematic review and meta-analyses of randomized controlled trials. Surg Endosc 2016: 2155–2168
- [125] Shi K, Shen Z, Zhu G et al. Systematic review with network metaanalysis: dual therapy for high-risk bleeding peptic ulcers. BMC Gastroenterology 2017; 55: doi:10.1186/s12876-017-0610-0
- [126] Kim JW, Jang JY, Lee CK et al. Comparison of hemostatic forceps with soft coagulation versus argon plasma coagulation for bleeding peptic ulcer – a randomized trial. Endoscopy 2015; 47: 680–687
- [127] Kyaw M, Tse Y, Ang D et al. Embolization versus surgery for peptic ulcer bleeding after failed endoscopic hemostasis: A meta-analysis. Endoscopy International Open 2014; 2: doi:10.1055/s-0034-1365235
- [128] Beggs AD, Dilworth MP, Powell SL et al. A systematic review of transarterial embolization versus emergency surgery in treatment of major nonvariceal upper gastrointestinal bleeding. Clinical and Experimental Gastroenterology 2014; 7: 93–104
- [129] Tarasconi A, Baiocchi G, Pattonieri V et al. Transcatheter arterial embolization versus surgery for refractory non-variceal upper gastrointestinal bleeding: A meta-analysis. World J Emerg Surgery 2014: 14: 1–13
- [130] Sverden E, Mattsson F, Lindstrom D et al. Transcatheter arterial embolization compared with surgery for uncontrolled peptic ulcer bleeding. A population-based cohort study. Ann Surg 2019; 269: 304–309
- [131] Park JS, Kim HK, Shin YW et al. Novel hemostatic adhesive powder for nonvariceal upper gastrointestinal bleeding. Endosc Int Open 2019; 07: E1763–E1767
- [132] Alzoubaidi D, Hussein M, Rusu R et al. Outcomes from an international multicenter registry of patients with acute gastrointestinal bleeding undergoing endoscopic therapy with Hemospray. Dig Endosc 2020; 32: 96–105
- [133] Baracat F, Hourneaux de Moura D, Brunaldi V et al. Randomized controlled trial of hemostatic powder versus endoscopic clipping for non-variceal upper gastrointestinal bleeding. Surg Endosc 2020; 34: 317–324
- [134] Barkun AN, Adam V, Lu Y et al. Using Hemospray improves the costeffectiveness ratio in the management of upper gastrointestinal nonvariceal bleeding. J Clin Gastroenterol 2018; 52: 36–44
- [135] Wedi E, Fischer A, Hochberger J et al. Multicenter evaluation of firstline endoscopic treatment with the OTSC in acute non-variceal upper gastrointestinal bleeding and comparison with the Rockall cohort: the FLETRock study. Surg Endosc 2018; 32: 307–314
- [136] Manta R, Galloro G, Mangiafico S et al. First-line endoscopic treatment with over-the-scope clips in patients with either upper or lower gastrointestinal bleeding: a multicenter study. Endosc Int Open 2018; 06: E1317–E1321
- [137] Brandler J, Buttar N, Baruah A et al. Efficacy of over-the-scope clips in management of high-risk gastrointestinal bleeding. Clin Gastroenterol Hepatol 2018; 16: 690–696
- [138] Chandrasekar VT, Sharma P, Desai M et al. Efficacy and safety of over-the-scope clips for gastrointestinal bleeding: a systematic review and meta-analysis. Endoscopy 2019; 51: 941–949
- [139] Goelder S, Messmann H, Neuhaus L et al. Over-the-scope clip in peptic ulcer bleeding: clinical success in primary and secondary treatment and factors associated with treatment failure. Endoscopy International Open 2019; 7: E846–E854

- [140] Kobara H, Hirohito M, Tsutomu M et al. Over-the-scope-clips: A review of 1517 cases over 9 years. J Gastroenterol Hepatol 2019; 34: 22–30
- [141] Richter-Schrag HJ, Thimme R, Glatz T et al. First-line endoscopic treatment with over-the-scope clips significantly improves the primary failure and rebleeding rates in high-risk gastrointestinal bleeding: A single-center experience with 100 cases. World J Gastroenterol 2016; 22: 9162–9171
- [142] Asokkumar R, Ngu JH, Soetikno R et al. Use of over-the-scope-clip (OTSC) improves outcomes of high-risk adverse outcome (HR-AO) non-variceal upper gastrointestinal bleeding (NVUGIB). Endoscopy International Open 2018; 06: E789–E796
- [143] Lamberts R, Halm U, Koch A et al. Use of over-the-scope-clips (OTSC) for hemostasis in gastrointestinal bleeding in patients under antithrombotic therapy. Endosc Int Open 2017; 05: E324–E330
- [144] Wedi E, Hochberger J, Gonzalez S et al. One hundred and one overthe-scope-clip applications for severe gastrointestinal bleeding, leaks and fistula. World | Gastroenterol 2016; 22: 1844–1853
- [145] Jensen DM, Kovacs TOG, Ghassemi KA et al. Randomized controlled trial of over-the-scope clip as initial treatment of severe non-variceal upper gastrointestinal bleeding. Clin Gastroenterol Hepatol 2020: doi:10.1016/j.cqh.2020.08.046
- [146] Schmidt A, Caca K, Goelder S et al. Over-the-scope clips are more effective than standard endoscopic therapy for patients with recurrent bleeding of peptic ulcers. Gastroenterology 2018; 155: 674–686
- [147] Arima S, Sakata Y, Ogata S et al. Evaluation of hemostasis with soft coagulation using endoscopic hemostatic forceps in comparison with metallic hemoclips for bleeding gastric ulcers: a prospective, randomized trial. J Gastroenterol 2010; 45: 501–505
- [148] Kataoka M, Kawai T, Hayama Y et al. Comparison of hemostasis using bipolar hemostatic forceps with hemostasis by endoscopic hemoclipping for nonvariceal upper gastrointestinal bleeding in a prospective non-randomized trial. Surg Endosc 2013; 27: 3035–3038
- [149] Nunoue T, Takenaka R, Hori K et al. A randomized trial of monopolar soft-mode coagulation versus heater probe thermocoagulation for peptic ulcer bleeding. J Clin Gastroenterol 2015; 49: 472–476
- [150] Kim JW, Jang JY, Lee CK et al. Comparison of hemostatic forceps with soft coagulation versus argon plasma coagulation for bleeding peptic ulcer – a randomized trial. Endoscopy 2015; 47: 680–687
- [151] Toka B, Eminler AT, Karacaer C et al. Comparison of monopolar hemostatic forceps with soft coagulation versus hemoclip for peptic ulcer bleeding: a randomized trial (with video). Gastrointest Endosc 2019; 89: 792–802
- [152] Neumann I, Letelier LM, Rada G et al. Comparison of different regimens of proton pump inhibitors for acute peptic ulcer bleeding. Cochrane Database Syst Rev 2013; 6: 007999 doi:10.1002/14651858.CD007999
- [153] Sgourakis G, Chatzidakis G, Poulou A et al. High-dose vs. low-dose proton pump inhibitors post-endoscopic hemostasis in patients with bleeding peptic ulcer. a meta-analysis and meta-regression analysis. Turk J Gastroenterol 2018; 29: 22–31
- [154] Sachar H, Vaidya K, Laine L. Intermittent vs continuous proton pump inhibitor therapy for high-risk bleeding ulcers: a systematic review and meta-analysis. JAMA Intern Med 2014; 174: 1755–1762
- [155] Javid G, Zargar SA, U-Saif R et al. Comparison of po or IV proton pump inhibitors on 72-h intragastric pH in bleeding peptic ulcer. J Gastroenterol Hepatol 2009; 24: 1236–1243
- [156] Sung JJ, Suen BY, Wu JC et al. Effects of intravenous and oral esomeprazole in the prevention of recurrent bleeding from peptic ulcers after endoscopic therapy. Am J Gastroenterol 2014; 109: 1005– 1010

- [157] El Ouali S, Barkun AN, Wyse J et al. Is routine second-look endoscopy effective after endoscopic hemostasis in acute peptic ulcer bleeding? A meta-analysis. Gastrointest Endosc 2012; 76: 283–292
- [158] Imperiale TF, Kong N. Second look endoscopy for bleeding peptic ulcer disease: a decision and cost-effectiveness analysis. J Clin Gastroenterol 2012; 46: 71–75
- [159] Chiu PWY, Joeng HKM, Choi CLY et al. High-dose omeprazole infusion compared with scheduled second-look endoscopy for prevention of peptic ulcer rebleeding: a randomized controlled trial. Endoscopy 2016; 48: 717–22
- [160] Park SJ, Park H, Lee YC et al. Effect of scheduled second-look endoscopy on peptic ulcer bleeding: a prospective randomized multicenter trial. Gastrointest Endos 2018; 87: 457–465
- [161] Laine L, Spiegel B, Rostom A et al. Methodology for randomized trials of patients with nonvariceal upper gastrointestinal bleeding: recommendations from an international consensus conference. Am J Gastroenterol 2010; 105: 540–550
- [162] Lau JYW, Sung JJY, Lam YH et al. Endoscopic retreatment compared with surgery in patients with recurrent bleeding after initial endoscopic control of bleeding ulcer. N Engl J Med 1999; 340: 751–756
- [163] Haddara S, Jacques J, Lecleire S et al. A novel hemostatic powder for upper gastrointestinal bleeding: a multicenter study (the "GRAPHE" registry). Endoscopy 2016; 48: 1084–1095
- [164] Rodríguez de Santiago E, Burgos-Santamaría D, Pérez-Carazo L et al. Hemostatic spray powder TC-325 for GI bleeding in a nationwide study: survival and predictors of failure via competing risks analysis. Gastrointest Endosc 2019; 90: 581–590
- [165] Lau JYW, Pittayanon R, Wong KT et al. Prophylactic angiographic embolisation after endoscopic control of bleeding to high-risk peptic ulcers: a randomised controlled trial. Gut 2019; 68: 796–803
- [166] Gisbert JP, Khorrami S, Carballo F et al. Meta-analysis: Helicobacter pylori eradication therapy vs. anti-secretory non-eradication therapy for the prevention of recurrent bleeding from peptic ulcer. Aliment Pharmacol Ther 2004; 19: 617–629
- [167] Ford AC, Delaney BC, Forman D et al. Eradication therapy in Helicobacter pylori positive peptic ulcer disease: systematic review and economic analysis. Am J Gastroenterol 2004; 99: 1833–55
- [168] Gisbert JP, Calvet X, Cosme A et al. Long-term follow-up of 1,000 patients cured of Helicobacter pylori infection following an episode of peptic ulcer bleeding. Am J Gastroenterol 2012; 107: 1197–1204
- [169] Ford AC, Gurusamy KS, Delaney B et al. Eradication therapy for peptic ulcer disease in Helicobacter pylori-positive people. Cochrane Database Syst Rev 2016; 4: CD003840
- [170] Chang SS, Hu HY. Helicobacter pylori eradication within 120 days is associated with decreased complicated recurrent peptic ulcers in peptic ulcer bleeding patients. Gut Liver 2015; 9: 346–352
- [171] Hung KW, Knotts RM, Faye AS et al. Factors associated with adherence to Helicobacter pylori testing during hospitalization for bleeding peptic ulcer disease. Clin Gastroenterol Hepatol 2020; 18: 1091– 1098
- [172] Sverdén E, Brusselaers N, Wahlin K et al. Time latencies of Helicobacter pylori eradication after peptic ulcer and risk of recurrent ulcer, ulcer adverse events, and gastric cancer: a population-based cohort study. Gastrointest Endosc 2018; 88: 242–250
- [173] Gisbert JP, Abraira V. Accuracy of Helicobacter pylori diagnostic tests in patients with bleeding peptic ulcer: a systematic review and meta-analysis. Am J Gastroenterol 2006; 101: 848–863
- [174] Sánchez-Delgado J, Gené E, Suárez D et al. Has H. pylori prevalence in bleeding peptic ulcer been underestimated? A meta-regression Am | Gastroenterol 2011; 106: 398–405
- [175] Lim LG, Ho KY, So JB et al. Diagnosis and treatment of Helicobacter pylori for peptic ulcer bleeding in clinical practice factors asso-

- ciated with non-diagnosis and non-treatment, and diagnostic yield in various settings. Turk | Gastroenterol 2014; 25: 157–161
- [176] Lanas A, Garcia-Rodriguez LA, Arroyo MT et al. Effect of anti-secretory drugs and nitrates on the risk of ulcer bleeding associated with nonsteroidal anti-inflammatory drugs, antiplatelet agents, and anticoagulants. Am | Gastroenterol 2007; 102: 507–515
- [177] Bhatt DL, Scheiman J, Abraham NS et al. ACCF/ACG/AHA 2008 expert consensus document on reducing the gastrointestinal risks of antiplatelet therapy and NSAID use: a report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents. Circulation 2008; 118: 1894–1909
- [178] Kwok CS, Nijar RS, Loke YK. Effects of proton pump inhibitors on adverse gastrointestinal events in patients receiving clopidogrel: a systematic review and meta-analysis. Drug Saf 2011; 34: 47–57
- [179] Chen J, Chen SY, Lian JJ et al. Pharmacodynamic impacts of proton pump inhibitors on the efficacy of clopidogrel in vivo – a systematic review. Clin Cardiol 2013; 36: 184–189
- [180] Kwok CS, Loke YK. Meta-analysis: the effects of proton pump inhibitors on cardiovascular events and mortality in patients receiving clopidogrel. Aliment Pharmacol Ther 2010; 31: 810–823
- [181] Siller-Matula JM, Jilma B, Schror K et al. Effect of proton pump inhibitors on clinical outcome in patients treated with clopidogrel: a systematic review and meta-analysis. J Thromb Haemost 2010; 8: 2624–2641
- [182] Cardoso RN, Benjo AM, DiNicolantonio JJ et al. Incidence of cardiovascular events and gastrointestinal bleeding in patients receiving clopidogrel with and without proton pump inhibitors: an updated meta-analysis. Open Heart 2015; 2: e000248.2
- [183] Witt DM, Delate T, Garcia DA et al. Risk of thromboembolism, recurrent hemorrhage, and death after warfarin therapy interruption for gastrointestinal tract bleeding. Arch Intern Med 2012; 172: 1484–1491
- [184] Lee JK, Kang HW, Kim SG et al. Risks related with withholding and resuming anticoagulation in patients with non-variceal upper gastrointestinal bleeding while on warfarin therapy. Int J Clin Pract 2012; 66: 64–68
- [185] Qureshi W, Mittal C, Patsias I et al. Restarting anticoagulation and outcomes after major gastrointestinal bleeding in atrial fibrillation. Am J Cardiol 2014; 113: 662–668
- [186] Staerk L, Lip GY, Olesen JB et al. Stroke and recurrent haemorrhage associated with antithrombotic treatment after gastrointestinal bleeding in patients with atrial fibrillation: nationwide cohort study. BMJ 2015; 351: h5876
- [187] Kido K, Scalese MJ. Management of oral anticoagulation therapy after gastrointestinal bleeding: whether to, when to, and how to restart an anticoagulation therapy. Ann Pharmacother 2017; 51: 1000–1007

- [188] Majeed A, Wallvik N, Eriksson J et al. Optimal timing of vitamin K antagonist resumption after upper gastrointestinal bleeding. A risk modelling analysis. Thromb Haemost 2017; 117: 491–499
- [189] Hernandez I, Zhang Y, Brooks MM et al. Anticoagulation use and clinical outcomes after major bleeding on dabigatran or warfarin in atrial fibrillation. Stroke 2017; 48: 159–166
- [190] Granger CB, Alexander JH, McMurray JJV et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med 2011; 365: 981– 992
- [191] Lip GY, Nieuwlaat R, Pisters R et al. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. Chest 2010; 137: 263–272
- [192] Sandhu RK, Bakal JA, Ezekowitz JA et al. Risk stratification schemes, anticoagulation use and outcomes: the risk-treatment paradox in patients with newly diagnosed non-valvular atrial fibrillation. Heart 2011; 97: 2046–2050
- [193] Pisters R, Lane DA, Nieuwlaat R et al. A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation. Chest 2010; 138: 1093–100
- [194] Lanas A, Garcia-Rodriguez LA, Arroyo MT et al. Effect of antisecretory drugs and nitrates on the risk of ulcer bleeding associated with nonsteroidal anti-inflammatory drugs, antiplatelet agents, and anticoagulants. Am J Gastroenterol 2007; 102: 507–515
- [195] Masso Gonzalez EL, Garcia Rodriguez LA. Proton pump inhibitors reduce the long-term risk of recurrent upper gastrointestinal bleeding: An observational study. Aliment Pharmacol Ther 2008; 28: 629–637
- [196] Lin KJ, Hernandez-Diaz S, Garcia Rodriguez LA. Acid suppressants reduce risk of gastrointestinal bleeding in patients on antithrombotic or anti-inflammatory therapy. Gastroenterology 2011; 141: 71–79
- [197] Chan EW, Lau WC, Leung WK et al. Prevention of dabigatran-related gastrointestinal bleeding with gastroprotective agents: A population-based study. Gastroenterology 2015; 149: 586–595
- [198] Ray WA, Chung CP, Murray KT et al. Association of proton pump inhibitors with reduced risk of warfarin-related serious upper gastrointestinal bleeding. Gastroenterology 2016; 151: 1105–1112
- [199] Moayyedi P, Eikelboom JW, Bosch J et al. Pantoprazole to prevent gastroduodenal events in patients receiving rivaroxaban and/or aspirin in a randomized, double-blind, placebo-controlled trial. Gastroenterology 2019; 157: 403–412
- [200] Chan EW, Lau WC, Leung WK et al. Prevention of dabigatran-related gastrointestinal bleeding with gastroprotective agents: A population-based study. Gastroenterology 2015; 149: 586–595

Supplementary material

Diagnosis and management of nonvariceal upper gastrointestinal hemorrhage (NVUGIH): European Society of Gastrointestinal Endoscopy (ESGE) Guideline – Update 2021

Table 1s Key questions: acute nonvariceal upper gastriointestinal hemorrhage (NVUGIH)

- 1. Patient presentation hemodynamic resuscitation and risk assessment
 - a. How should the patient presenting with signs of acute upper GI bleeding (hematemesis, coffee ground emesis, melena) be initially hemodynamically resuscitated?
 - i. what type of fluid(s) should be used? E.g., crystalloid fluids, plasma-expanders, red blood cell transfusions, fresh frozen plasma, platelets etc.?
 - b. What are the evidence-based red blood cell transfusion recommendations?
 - i. Restrictive vs liberal red blood cell transfusion policy?
 - ii. Target hemoglobin for otherwsie healthy individuals?
 - iii. Target hemoglobin for individuals with cardiovascular disease?
 - c. How should patient risk assesssment / stratification be used?
 - d. What risk stratification score(s) are reliable and valid? How / when should we apply validated risk stratification tools in clinical practice (pre-endoscopic scores, e.g., glasgow-blatchford score, clinical rockall score, AIMS65, something else)?
 - e. Can we risk-stratify low-risk patients at presentation and recommend immediate hospital discharge, thus avoiding hospital admission?
 - f. What's the role of endoscopic stigmata (Forresst classification) in risk stratification?

2. Pre-endoscopic management

- a. How shoud we manage the patient using anti-platelet agents (single and/or dual) at the time of acute upper GI bleeding?
 - i. continue them without interruption? stop them? If stopping, for how long? When to restart?
 - ii. give reversal agents?
 - iii. give fresh frozen plasma? Cryoprecipitate? Platelets? Tranxemic acid? Other?
- b. How should we manage the patient using anti-coagulants (Vit K antagonists / DOACs) at the time of acute upper GI bleeding?
 - i. continue them without interruption? stop them? If stopping, for how long? When to restart?
 - ii. give reversal agents?
 - iii. give fresh frozen plasma? Cryoprecipitate? Platelets? Tranxemic acid? Other?
- c. What is the role of "early administration" (pre-endoscopy) PPI therapy (dose, timing, route)?
- d. Is there a role for somatostatin therapy in acute NVUGIH?
- e. Is there a role for nasogastric / orogastric tube aspiration?
- f. Is there a role for prophylactic endotracheal intubation before upper endoscopy?
 - i. Why to endotracheally intubate prophylactically?
 - ii. When to endotracheally intubate prophylactically?
 - iii. Who to endotracheally intubate prophylactically?
- g. What is the role of prokinetic agents (e.g., metaclopramide, erythromycin) prior to upper endoscopy?
 - i. When to use?
 - ii. In whom to use?
 - iii. When to give prior to upper endoscopy?

- iv. What dose?
- v. What are the contraindications to use?

3. Endoscopic management of peptic ulcer hemorrhage

- a. Timing of endoscopy What should be the timing of endoscopy in patients presenting with acute upper GI bleeding?
- i. Define early/emergent/urgent/ delayed endoscopy?
- ii. Which patients should undergo early/emergent/urgent/delayed endoscopy?
- iii. What is the relationship between hemodynamic resuscitation and timing of endoscopy?
- iv. Timing of endoscopy in patients using anti-platelet agents or anti-coagulants (does INR level matter)?
 - b. Which endoscopic classification should be used for describing low and high risk endoscopic stigmata in peptic ulcer bleeding? Forrest Class? Descriptive?
 - c. What ulcer stigmata require endoscopic hemostasis? Define high risk vs low risk endoscopic stigmata and their importance?
 - d. Which therapeutic endoscopic approach should be used (for peptic ulcer bleeding)?
 - i. Injection monotherapy? e.g., epinephrine, sclerosants, fibrin, thrombin
 - ii. Thermal contact monotherapy? e.g., bipolar, multi-polar, heat probe
 - iii. Thermal non-contact therapy? e.g., argon plasma coagulation
 - iv. Through-the-scope endoscopic clips?
 - v. Over-the-scope endoscopic clamps e.g., Ovesco OTSC?
 - vi. Topical powders / sprays?
 - vii. Coag grasper?
 - viii. Combination endoscopic therapy? e.g., injection + injection? injection + contact thermal therapy? injection + clips? Other?

- e. Is there a role for Doppler US in helping to better evaluate endoscopic stigmata of recent hemorrhage for peptic ulcer bleeding? Its use pre and post endoscopic hemostasis therapy?
- f. Is there a role for capsule endoscopy in the emergency department in evaluating acute UGI bleeding?

4. Post-endoscopic management

- a. What are the recommendations for use of PPI post endoscopic hemostasis?
 - i. Route? Timing? Continuous? Intermittant? Duration of therapy?
- b. Is there a role for "scheduled" second-look endoscopy?
- c. What to do with persistent bleeding / rebleeding / failed endoscopic hemostasis:
 - i. What is the role of repeat upper endoscopy?
 - ii. When is interventional radiology evaluation and treatment indicated? Using what? CTA? Angiopgraphy? Other?
 - iii. When is surgery indicated?
- d. Diagnois and treatment of H. Pylori in the acute setting of NVUGIH
 - i. When?
 - ii. In whom?
 - iii. What if testing for h pylori in the acute setting of bleeding negative?
- e. How should we manage the NVUGIH patient using anti-platelet and anti-coagulant drugs (anti-thrombotic agents) post endoscopy?
 - i. When do we restart these medications post endoscopy?

Table 2s Key words used in systematic literature search

Key words

upper gastrointestinal hemorrhage, non-variceal upper gastrointestinal hemorrhage / bleeding, peptic ulcer hemorrhage, peptic ulcer bleeding, fluid resuscitation, fluid therapy, critical illness, crystalloid solutions, colloid solutions, plasma transfusions, red blood cell transfusion, platelet transfusion, hemoglobin, restrictive transfusion strategy, liberal transfusion strategy, risk stratification, mortality, rebleeding, anti-thrombotic agent, anti-platelet agent, dual anti-platelet therapy, anti-coagulation / anti-coagulant, coagulopathy, vitamin K inhibitor / antagonist, prokinetic agent, erythromycin, fresh frozen plasma, nasogastric tube, orogastric tube, proton pump inhibitor, prokinetic agent, erythromycin, endoscopic hemostasis, endotherapy, injection therapy, thermal therapy (contact, non-contact), mechanical therapy / endoscopic clipping, topical hemostasis therapy, second-look endoscopy, Doppler probe ultrasound, capsule endoscopy, video capsule endoscopy, helicobacter pylori, trans-catheter angiographic embolization, and surgery.

 Table 3s
 Evidence tables

Reference	Study design	Intervention	Participants	Outcome	Results	Level of evidence conclusion
1) The Use of Limited Fluid Resuscitation and Blood Pressure Controlling Drugs in the Treatment of Acute Upper Gastrointestinal Hemorrhage Concomitant with Hemorrhagic Shock. Lu B, et al. Biochem Biophys. 2015 Jun;72(2):461-3.	RCT	limited fluid resuscitation regimen combined with blood pressure-controlling drugs (dopamine) in treating acute upper gastrointestinal hemorrhage concomitant with hemorrhagic shock	n = 51; conventional group = 24 patients vs limited fluid resuscitation group (study group) = 27 patients	pre- and 12 h post-infusions, arterial blood samples for blood gas analysis, venous blood samples for routine blood analysis, blood lactate, base excess values, hemoglobin, amount of fluid resuscitation, mortality, complications	complication rates were lower in patients who received limited fluid resuscitation and drug-induced hypertension effective restoration of circulating blood volume and perfusion maintenance of vital organs	Limited fluid resuscitation combined with blood pressure- controlling drugs effective maintains blood perfusion of vital organs, improves whole body perfusion indicators, reduces the volume of fluid resuscitation, and achieves better bleeding control and resuscitation effectiveness Limit: single center - Chinese population - small sample size difficult to draw abovementioned conclusion from presented results

2) Efficacy of limited fluid resuscitation in		efficacy of	11 studies and 1482	mortality,	reduction in mortality	Limited fluid
patients with hemorrhagic shock: a meta-		limited fluid	patients (3 studies	complication	with limited fluid	resuscitation should be
analysis.		resuscitation	upper GI bleeding		resuscitation (RR0.67;	used in active
Duran C at al lat I Clin Fun Mad		during active	patients); 752 in		95% CI=0.56-0.81,	hemorrhage in trauma
Duan C, et al. Int J Clin Exp Med		hemorrhage	limited fluid		p<0.00001)	setting
	Meta- analysis	resuscitation	resuscitation group vs. 757 in regular fluid resuscitation group		reduction in occurrence of postoperative complication with limited fluid resuscitation (MODS: RR 0.37; 95% CI 0.21-0.66, p = 0.0008, ARDS RR = 0,35 (95% CI 0.21-0.6, p<0.0001)	Limit: Only Chinese population in upper GI bleeding series (3/11), not generalization to European population

Critically ill trauma patients and hypotensive resuscitation

Reference	Study design	Intervention	Participants	Outcomes	Results	Level of evidence conclusion
3) Intraoperative hypotensive		target minimum	'	· · · · · · · · · · · · · · · · · · ·		hypotensive resuscitation
resuscitation for patients undergoing		mean arterial	trauma (gun shot	30d mortality	advantage existed for	at a target MAP of 50
laparotomy or thoracotomy for trauma:		pressure (MAP)	stab wound)and	300 mortanty	the LMAP group at 30	mm Hg could NOT
Early termination of a randomized		of 50 mm Hg	hypotension	complications	days (p = 0.48) or 24	significantly improve 30-
prospective clinical trial.	RCT	(experimental	(RRsyst<90mHg)and		hours (p = 0.27). Acute	day mortality.
		arm, LMAP; n=	need of laparotomy		renal injury occurred	15 - 21 - 22 - 12
Carrick MM, et al. J Trauma Acute Care		86) or 65 mm Hg			less often in the LMAP	limit: single center
Surg 2016;80:886-96.		(control arm,			than in HMAP group	
		HMAP; n = 82)			(13% vs. 30%, p = 0.01).	

Reference	Study design	Intervention	Participants	Outcome	Results	Level of evidence conclusion
4) Colloids versus crystalloids for fluid resuscitation in critically ill people Lewis SR et al. Cochrane Database of Systematic Reviews 2018;8:CD000567 Critically ill patients; com	Systematic Review	comparison of four types of colloid (i.e. starches; dextrans; gelatins; and albumin or FFP) versus crystalloids	69 studies : 65 RCTs, 4 quasi- RCTs n= 30,020	mortality 30day, 90day	little or no difference in all-cause mortality at the end of follow-up, at 90 days, or at 30 days, between using colloids (starches; dextrans; or albumin or FFP) or crystalloids for fluid resuscitation in critically ill people	little or no difference in all-cause mortality moderate-certainty evidence of a slight increase in the need for blood transfusion or renal replacement therapy when starches were used for fluid resuscitation moderate-certainty data
5) Balanced Crystalloids Versus Saline in Critically Ill Adults: A Systematic Review and Meta-analysis Hammond DA et al., Ann Pharmacother. 2020;54:5	Review and Meta-	fluid resuscitation with balanced crystalloids or 0.9% sodium chloride (saline)	13 studies n = 30 950	28-30 day mortality	Balanced crystalloids demonstrated lower hospital or $28/30$ -day mortality (risk ratio [RR] = 0.86 ; 95% CI = 0.75 - 0.99 ; I^2 = 82%) overall odds of major adverse kidney events occurring in the first 30 days were less with balanced crystalloids than saline (OR = 0.78 ; 95% CI = 0.66 - 0.91 ; I^2 = 42%)	Balanced crystalloids should be preferred instead of saline in most critically ill adult patient

6) Balanced Crystalloids		saline 0.9% sodium	n= 15 802 adult	major adverse	major adverse kidney event :	balanced crystalloids
versus Saline in Critically		chloride or	ICU patients	kidney event	balanced-crystalloids group: 1139	rather than saline had a
III Adults.		balanced		within 30 days	(14.3%) vs. saline group: 1211	favorable effect on the
Semler M et al., N Engl J		crystalloids		a composite of	, , , , , , , , , , , , , , , , , , , ,	composite outcome of
Med 2018;378:829-39		(lactated Ringer's		death from any	· · · · · · · · · · · · · · · · · · ·	death, new renal-
	RCT	solution or Plasma-		cause,		replacement therapy, or
ľ		Lyte A)		caase,	Among nationts with sonsis 30-day	persistent renal
				new renal-	inhospital mortality: 25.2% with	dysfunction.
					balanced crystalloids; 29.4% with	
				therapy, or	saline (adjusted OR, 0.80; 95% CI,	
				persistent renal	0.67 - 0.97; P=0.02)	
				dysfunction	, ,	

Study Ref.	Study type	Patient group	Key outcomes	Key results	Limitation	Conclusion
1) Restrictive versus liberal blood transfusion for gastrointestinal bleeding: a systematic review and meta-analysis of randomised controlled trials Odutayo A et al. 2017;2:354-360. Lancet Gastroenterol Hepatol	Systematic review and meta- analysis	4 published and 1 unpublished randomised controlled trial 1965 participants 919 restrictive transfusion strategy and 1064 liberal transfusion strategy	Mean RBC transfusion Comparison treatment effects between patient subgroups, including patients with liver cirrhosis, patients with non-	Number of RBC units transfused lower in the restrictive transfusion group (mean difference -1·73 units, 95% CI -2·36 to -1·11, p<0·0001). Restrictive transfusion associated with lower risk of all-cause mortality (RR 0·65, 95% CI 0·44-0·97, p=0·03) and rebleeding overall (0·58, 0·40-0·84, p=0·004) No difference in risk of ischaemic events	Differing transfusion thresholds used in the trials → reduce the validity of pooling data Most of the data came from two RCTs, which could affect the generalisability of our findings.	Restrictive strategy is safe in all subgroups of patients

_, _			I	<u> </u>	I	
2) Restrictive versus		l'		' ·	cluster randomised	Restrictive
liberal blood		or older with new	* *	' '	trials	strategy is safe
transfusion for acute		l'	J	liberal policy (restrictive policy		
upper gastrointestinal		' ' ' '	myocardial	133 [33%] vs liberal policy 247		
bleeding (TRIGGER): a	RCT	bleeding, irrespective of		[46%]; difference –12% [95% CI –		
pragmatic, open-label,		comorbidity, except for		35 to 11]; p=0.23), with fewer		
cluster randomised		exsanguinating		RBC units transfused (mean 1.2		
feasibility trial.	pragmatic,	haemorrhage	kidney injury,	[SD 2.1] vs 1.9 [2.8]; difference –		
		Restrictive: 80 g/L;	•	0.7 [-1.6 to 0.3]; p=0.12),		
	' '	liberal: 100 g/L		although these differences were		
Jairath V, et al.	randomised	inderal. 100 g/L	FU: 28 days	not significant.		
Lancet. 2015;386:137-	feasibility		1 0 . 20 days			
44	•	936 patients across six				
		hospitals (403 patients		No significant difference in		
		in three hospitals with a		clinical outcomes		
		restrictive policy and				
		533 patients in three				
		hospitals with a liberal				
		policy)				
		ропсуу				
3)Restrictive vs.		Patients with sign of	Mortality at 45 days	The mortality rate within 45 days	Abstract, no full text	Restrictive
Liberal transfusions		upper GI bleeding, 224	Number of days	similar between the two groups	available	transfusion did
strategy in patients		patients were included	Number of days	(restrictive vs. liberal; 10/112 vs.		not increase
NA/i+b uppor	prospective,	iin the study. 112 each in	from admission to	12/112; Hazard Ratio of 0.83;		the mortality,
With upper		group	death	p=0.326).	Single center	morbidity, re-
gastrointestinal	labeled,	Doth groups word	Cause of death			bleeding
bleeding — a randomized	parallel arm;	Both groups were	lille of a botton		Low effective (lack of	rates and the
i andomized	noninferiority	comparable at admission	Hb value before	mean number of days from	power)	need for
Controlled trial	RCT	auiiiissiuii	death	admission to death, hemoglobin		interventions
			Number of	before death,		interventions
		Exclusion: massive	rebleeding episodes			

Kate et al., Gastroenterology, 2018;154: 6, Abstract S-700 - S-701		bleeding, transfusion within 90 days and a recent history of trauma or surgery	Requirement of Sengstaken Blakemore (SB) tube placement Length of hospital stay	number of rebleeding episodes, incidence of re-bleeding episodes, need for interventions, medical treatment, and cause of death during hospital stay due to variceal and nonvariceal causes were similar between the two groups.		
4) Target Level for Hemoglobin Correction in Patients With Acute Non-Variceal Upper Gastrointestinal Bleeding Lee, Jae Min et al. Gastroenterology, 2014;146: 5, Abstract S-321	RCT	restrictive transfusion, n=32 liberal transfusion, n=31 Restrictive: 80 g/L; liberal: 100 g/L Patients with liver	Hb level at 7 days and 45 days	liberal transfusion group (15.6% vs. 19.7%)	Abstract, no full text available Single center Low effective (lack of power)	Restrictive transfusion strategy is safe Less rebleeding rate
5)Transfusion thresholds and other	Systematic review and		30-day mortality Other clinical	Transfusing at a restrictive haemoglobin concentration of	insufficient data to inform the safety of	Good evidence that

strategies for guiding allogeneic red blood cell transfusion. Carson JL, et al. Cochrane Database Syst Rev. 2016;10:CD002042.	meta- analysis	A total of 31 trials, involving 12,587 participants The restrictive transfusion threshold most commonly 7 g/dL or 8 g/dL liberal transfusion threshold most commonly 9 g/dL to 10 g/dL	in the RCT	between 7 g/dL to 8 g/dL decreased the proportion of participants exposed to RBC transfusion by 43% across a broad range of clinical specialities Overall, restrictive transfusion did not increase or decrease the risk of 30-day mortality compared with liberal transfusion strategies (RR 0.97, 95% CI 0.81 to 1.16, I² = 37%; N = 10,537; 23 trials; moderate-quality evidence) or any of the other outcomes assessed (i.e. cardiac events (low-quality evidence), myocardial infarction, stroke, thromboembolism)	acute coronary	with allogeneic RBCs can be avoided in most patients with
6)Effect of restrictive versus liberal transfusion strategies on outcomes in patients with cardiovascular disease in a non-cardiac surgery setting: systematic review and meta-analysis.	Systematic review and meta- analysis		30-day mortality, and cardiovascular events	The pooled risk ratio for the	Our review has several limitations. There was clinical diversity between trial populations restrictive and liberal transfusion thresholds varied between trials, and the cut-off values	These data support the use of a more liberal transfusion threshold (>80 g/L) for patients with both acute and chronic cardiovascular disease until adequately

Docherty AB, et al. BMJ. 2016;352:i1351.	n=1519	confidence interval 1.18 to 2.70, P=0.01, I2=0%).		powered high quality
			cardiovascular disease varied, and inclusion criteria for	randomised trials have been undertaken in patients with cardiovascular disease.

	T	T			ı	
	Retrospective,	Consecutive	Hospital-based	GBS ≤ 1 had a high level of	•	Use of GBS ≤ 1 for identificatior
	international,	UGIB patients	intervention	sensitivity (99.2%) and specificity		of patients suitable for
_	cohort study	(n=2305)	(transfusion,	(98.8%) for predicting need for		outpatient management seems
managing patients with upper gastrointestinal bleeding. Laursen SB, et al. Clin Gastroenterol Hepatol 2015:13:115-21.e2.	Following scores were evaluated: GBS and two age- extended versions of GBS Different thresholds of each score were evaluated		endoscopic treatment, interventional radiology, surgery) or in-hospital mortality Transfusion Haemostatic intervention (endoscopic treatment, surgery, interventional radiology) In-hospital mortality	hospital-based intervention or death. GBS ≤ 1identified a higher proportion of true low-risk patients compared with GBS = 0 (24.4 vs 13.6%; p<0.001) Among patients with GBS ≤ 2, 3% had adverse outcomes	No long-term follow-up	safe and increases the number of identified patients suitable for outpatient management compared to GBS=0 A significant proportion of patients with GBS ≤ 2 experience adverse outcomes
Comparison of risk		Consecutive	Hospital-based	, ,	Many	GBS ≤ 1 had high accuracy at
scoring systems for	•	UGIB patients	intervention			predicting need for hospital-
patients presenting with upper	conort study	(n=3012)	(transfusion, endoscopic	hospital-based intervention or death compared with full Rockall	not scoped (31%)	based intervention or death within 30 days
gastrointestinal			treatment,	score (0.70), PNED score (0.69),	(31%)	within 50 days
	5		interventional	admission Rockall score (0.66), and		
international	Following scores		radiology, surgery),	AIMS65 (0.68).		
	were evaluated:		or 30-day mortality	MINISOS (0.00).	Inpatients not included	GBS had higher performance
	admission/full Rockall scores,		or 30-day mortality		inot included	for predicting need for hospital-based intervention or
Stanlev AJ. et al.	AIMS65, Glasgow Blatchford score		Endoscopic treatment 30 day mortality,	GBS ≤ 1 was the optimum threshold to predict survival without need for hospital-based		death than Rockall scores, AIMS65 and PNED

	(GBS), and PNED Different thresholds of each score were evaluated		rebleeding LOS	intervention with sensitivity 98.6% and specificity 34.6%. None of the evaluated scores were able to predict other outcomes with acceptable (AUROC ≤0.80) ability		None of the evaluated scores were able to predict need for transfusion, endoscopic therapy, or mortality with acceptable ability
value of preendoscopic risk scores to predict adverse outcomes in emergency	and meta-analysis predictive value of pre-endoscopic risk scores for 30- day serious adverse events UGIH	included: 3 studied Glasgow Blatchford Score (GBS), 1 clinical Rockall score	included 30-day mortality, recurrent bleeding and need for intervention	respectively; for the cRockall it was	prospective studies are needed to develop robust new scores for use in ED patients with UGIB.	The GBS with a cut-off point of 0 was superior over other cut-off points and risk scores for identifying low-risk patients but had a very low specificity. None of the risk scores identified by our systematic review were robust and hence, cannot be recommended for use in clinical practice. Future prospective studies are needed to develop robust new scores for use in ED patients with UGIB.
Comparison of the Glasgow-Blatchford and Rockall Scores for prediction of nonvariceal upper gastrointestinal	multicenter	Patients	In-hospital mortality Surgery Rebleeding	Rockall scores were closer associated with in-hospital mortality compared with GBS (AUROCs 0.80-0.84 vs 0.62)		Rockall score was superior to GBS in predicting in-hospital mortality

bleeding outcomes	Following scores	diagnosis	All scores had low ability to predict	Patients with
in Chinese patients.	were evaluated:	associated with	rebleeding (AUROCs ≤0.66) and	variceal
1 N/L at al	GBS and Rockall	UGIB who were	need for surgery (AUROCs ≤0.59)	bleeding
Lu M, et al.	scores	scoped		(12%) were
Medicine		(n=2.077)		excluded
(Baltimore).		(n=2,977)		No long town
2019;98:e15716				No long-term
				follow-up
				Retrospective
				design

Reference & year/country	Study design	Patients & Intervention	Outcomes	Results	Level of evidence	Conclusions & Comments
Surg Endosc 2019; Taiwan	2c lesions at a 2 nd look endoscopy, by	140 patients who had endoscopic therapy and at 2 nd look had had Forrest 2c lesion; split by Rockall >=6 or <6.	PU rebleeding day 4-14, and day 4-28 after first bleed.	Rebleeding at 4-14 days for Rockall >=6 vs <6 was 18.6% vs 2.9% (p=0.003) and at 4-28 days was 24.3% vs 4.3% (p=0.001). KM curve showed lower rebleeding with Rockall <6 (p=0.01)	Very low -Cohort study	Combination of Rockall >=6 and Forrest 2c lesion at 2 nd look endo identifies patients at risk of PUB rebleeding following initial endo & IV PPIs Rx. Used 2 nd look endoscopy
2018; Korean	(registry data) from	904 patients with PUB (897 analysed)	Rebleeding and 30-day mortality	30-day rebleeding in 64 (7.2%) 30-day mortality in 1%. Multivariate risk factors for rebleeding were: comorbidities, multiple drugs, albumin, hematemesis/hematochezia (not the Forrest classification)	Very low -Prospective multicentre cohort study	Relatively low PUB 30-day rebleeding and mortality rate. Rebleeding related to comorbidities, drugs, albumin and presentation symptoms rather than endo findings
Scand J Gastro 2018; International	use of endo-doppler probe (or not) pre- injection therapy in higher risk PUB patients	PUB patients with Forrest 1a- 2a lesions and Rockall >=5. 35 allocated to endo-doppler and 25 no doppler	PU rebleeding	No differences were seen in patient or ulcer characteristics. Rebleeding in doppler vs no-doppler was 20% vs 52% (p=0.013) and fewer doppler patients (1/35 vs 6/25) needed surgery (p=0.017). Bleeding related (but not all cause) mortality was lower with doppler (1/35 vs 6/25; p=0.017	Low -Non randomised comparative study	Suggests that use of endoscopic doppler to guide injection therapy may reduce rebleeding, need for surgery and bleeding related mortality for Forrest 1a-2a Peptic ulcers. However small and non-randomised study.

Gastro 2017; International study	Post hoc analysis of RCT of PPIs post PUB – ie observational cohort study of the placebo group & comparing 1b with other stigmata, and	388 PUB patients in RCT treated with placebo – assess rebleeding by Forrest	PU rebleeding by Forrest classification	Rebleeding: Forrest 1a: 22.5% Forrest 1b: 4.9% Forrest 2a 11.3% Forrest 2b 17.6	Moderate/low -Post hoc analysis of RCT data	Indicates that PUB with oozing blood (1b) have very low rebleeding risk- suggest they may not need to be considered high risk ie would not need post Rx IV PPIs
	comparing rebleeding in 1b given placebo vs PPIs			& no difference for 1b given PPI or placebo		
2016;	Multicentre, prospective cohort study	699 patients with PUB and high-risk lesions (Forrest 1a-2b) from Feb 2011-Dec 2013.	Rebleeding	Rebleeding seen in 64 (9.2%). 2 nd look endo was performed more in the non-rebleeding group (82% vs 62%; p<0.001). On multivariate analyses, use of NSAIDs, larger transfusions (>=5 units) and non-performance of 2 nd look endo were risk factors for rebleeding	Very low -Prospective multicentre cohort	Rebleeding seen in 9.2% of these higher risk PUB patients. Performing 2 nd look endo seemed to lower risk of rebleeding. Results not focusing on impact of Forrest lesion classification
Martinez Ramirez, Endoscopia 2016; Mexico	Single centre Cohort study	70 PUB patients 2013-2015	Rebleeding, mortality and other endpoints	Forrest classification only risk assessment scale associated with need for endoscopic therapy (p=0.0000), but ?not rebleeding Not the case with GBS, Rockall, or AIMS65	Very low - single centre cohort study	Forrest associated with endo- therapy (unsurprisingly), but not rebleeding or other endpoints

Open Int; Taiwan	Prospective single centre, non-randomised study comparing day 2 or day 3 2 nd look endo after endoRx and PPIs for PUB	316 patients	early rebleeding & use of score (R2nd) to predict need for 2 nd look endo were analysed	lot epineph injection alone & low	- non randomised single centre study	They created a new score to predict early and routine 2 nd look endoscopies
Gastro, 2015;Korea	(registry data) from 8 Korean hospitals	(11.4%) were Forrest 2b lesions and	outcomes between endoRx and Medical Rx; & assess risk factors for rebleeding in Forrest 2b	33.3% medical Rx (which had higher	- Registry data	Non randomised comparison of endoRx vs medical Rx for Forrest 2b PUB lesions in 126 patients. Note baseline parameters were different between groups.
DeGroot, Endosc. 2014; Holland		397 patients with PUB	rebleeding & all- cause mortality	rebleeding rate=59%	-Prospective cohort	Rebleeding after 1b PUB is lower than previously thought. Mortality poorly predicted by Forrest classification. Simplified classification proposed: High risk – Forrest 1a Increased risk – Forrest 1b-2c Low risk- Forrest 3

 · ·	with PUB	initial stabilization	1b (5.8%) - 66.7%	-Prospective cohort	Authors conclude that Forrest still help prediction of rebleeding (but not mortality). Small single centre observational study from Nigeria.
·	with PUB	endo-therapy, need for surgery	1a-2b). Rebleeding in this group	Very low -Prospective cohort	Note many high risk patients did not receive endo-therapy

Study Ref.	Study type	Patient group	Key outcomes	Key results	Limitation	Conclusion
10.) Laursen SB, Dalton HR, Murray IA, et al. Performance of new thresholds of the Glasgow Blatchford score in managing patients with upper gastrointestinal bleeding. Clin Gastroenterol Hepatol 2015;13:115-21.e2. study.	Retrospective, international, cohort study Following scores were evaluated: GBS and two age-extended versions of GBS Different thresholds of each score were evaluated	Consecutive UGIB patients (n=2305)	- Hospital-based intervention (transfusion, endoscopic treatment, interventional radiology, surgery) or inhospital mortality - Transfusion - Haemostatic intervention (endoscopic treatment, surgery, interventional radiology) - In-hospital mortality	GBS ≤ 1 had a high level of sensitivity (99.2%) and specificity (98.8%) for predicting need for hospital-based intervention or death. GBS ≤ 1identified a higher proportion of true low-risk patients compared with GBS = 0 (24.4 vs 13.6%; p<0.001) Among patients with GBS ≤ 2, 3% had adverse outcomes	Retrospective data collection in one centre No long-term follow-up Inpatients not included	Use of GBS ≤ 1 for identification of patients suitable for outpatient management seems safe and increases the number of identified patients suitable for outpatient management compared to GBS=0 A significant proportion of patients with GBS ≤ 2 experience adverse outcomes
11.) Mustafa Z, Cameron A, Clark E, Stanley AJ. Outpatient management of low-risk patients	Prospective single-center cohort study from UK	Consecutive UGIB-patients presenting to hospital	- Hospital-based intervention (transfusion, endoscopic treatment, interventional	GBS was closer associated with need for hospital- based intervention or death < 30 days compared with	Single-center study Only 31% of GBS≤1	GBS was superior to admission Rockall score in predicting need for hospital- based

with upper	Outpatient	(n=514)	radiology,	admission Rockall	managed in the	intervention or
gastrointestinal	management		surgery) or	score (AUROCs:	community	death < 30 days
bleeding: can we	were		death within 30	0.91 vs 0.75)	attended	
safely extend the	recommended		days		planned O/P	
Glasgow Blatchford	in patients				EGD	Patients with
Score in clinical	with GBS≤1			22% of patients had		GBS≤1 can safely
practice? Eur J				GBS=0		be managed as
Gastroenterol					No documented	outpatients
Hepatol	Patients not				reason for	unless hospital
2015;27:512-5.	attending O/P			36% of patients had	hospital	admission is
	EGD were			GBS ≤ 1	admission in	required for
	followed up at				16% of	other reasons
	least 6 month				admitted	
	after study			48% of patients	GBS≤1 patients	
	inclusion			with GBS ≤ 1 (17%		
				of total study		
				population) avoided		
	Following			admission to		
	scores were			hospital		
	evaluated:					
	GBS,					
	admission			None of the		
	Rockall score			patients with GBS ≤		
				1 managed outside		
				hospital developed		
				adverse outcomes		
				daverse outcomes		
				Among patients		
				with GBS ≤ 1		
				admitted to		
				aumitted to		

12.) Aquarius M, Smeets FG, Konijn HW, et al.	Prospective multi-center study from the	Consecutive patients presenting to	_	Need for treatment (transfusion,	hospital, 2% (n=2) required intervention or died (death due to non- GI malignancy, transfusion due to a MW-tear) NPV of GBS≤1 in predicting adverse outcomes was 98.9% GBS was closer associated with need for treatment	16% of patients did not undergo endoscopy	GBS is superior to both Rockall scores in
Prospective multicenter validation of the Glasgow Blatchford bleeding score in the management of patients with upper gastrointestinal hemorrhage	Netherlands Following scores were evaluated: GBS and Rockall scores	EDs with UGIB (n=520)		endoscopic treatment, surgery, embolisation) Rebleeding 30-day mortality Readmission	than both Rockall scores (AUROCs: 0.88 vs 0.70-0.77) GBS=0 had a sensitivity and specificity for	Chaosop,	predicting need for treatment in UGIB Patients with GBS≤2 have low risk of needing
presenting at an emergency department. Eur J Gastroenterol Hepatol				with UGIB	predicting need for treatment of 99.5% and 23.1%, respectively		treatment or dying < 30 days and are eligible for outpatient management

2015;27:1011-6.				sensitivity and specificity for predicting need for treatment of 99.5% and 35.2%, respectively		
				GBS≤2 had a sensitivity and specificity for predicting need for treatment of 99.4% and 42.4%, respectively		
				26% of patients had GBS≤2		
				Among patients with GBS≤2 1/137 needed treatment (patient with known oesophageal carcinoma and GBS=0) and 1/137 died (death not bleeding related)		
13.) Yang HM, Jeon	Prospective	Consecutive	- Hospital-based	GBS and full-Rockall	Potential	GBS was better

SW, Jung JT, et al.	multicentre	patients		intervention	score had similar	problems with	than Rockall
Comparison of	cohort study	presenting to		(transfusion,	ability to predict	overtreatment,	scores to predict
scoring systems for	from South	hospital with		endoscopic	need for hospital-	as some	need for
nonvariceal upper	Korea	non-variceal		treatment,	based intervention	patients with	hospital-based
gastrointestinal		UGIB		interventional	(AUROCs: 0.71 vs	absence of	intervention
bleeding: a				radiology,	0.73) and	stigmata of	
multicenter				surgery)	performed better	recent bleeding	
prospective cohort		(n=1584)		Rebleeding	than admission	at EGD	GBS had
study. J			-	Repleeding	Rockall score for	underwent	relatively low
Gastroenterol			-	30-day mortality	this endpoint	endoscopic	ability to predict
Hepatol					(AUROC: 0.60)	treatment (12%	need for
2016;31:119-25.						of patients with	hospital-based
						full-Rockall	intervention in
					Only 0.8% of	score=0)	this South
					patients had GBS=0		Korean/Asian
							population
						Very few low-	
					No patient with	risk patients	
					GBS=0 died or	indicating	Only very few
					required	potential	patients had
					haemostatic	selection bias	GBS=0 (<1%)
					intervention		
					(potential need for		
					transfusion not	No data on	Patients with
					specified in paper)	transfusion in	GBS=0 had low
						patients with	risk of poor
						low GBS	outcome
					Rockall scores were		
					better than GBS		
					(AUROCs: 0.75-0.76		
					vs 0.64) for		

				predicting 30-day mortality Fore predicting rebleeding all scores had AUROCs≤0.64		
14.) Park SM, Yeum SC, Kim BW, et al. Comparison of AIMS65 Score and Other Scoring Systems for Predicting Clinical Outcomes in Koreans with Nonvariceal Upper Gastrointestinal Bleeding. Gut Liver. 2016;10:526-31.	Single center retrospective cohort study from Korea Following scores were evaluated: AIMS65, GBS, Rockall scores	Patients presenting to hospital with non-variceal UGIB who underwent endoscopy (n=523)	 30-day mortality Rebleeding Transfusion Endoscopic treatment	AIMS65 (AUROC: 0.79) and Rockall scores (AUROC: 0.76-0,81) performed equally well and better than GBS (AUROC: 0.61) in predicting 30-day mortality Rockall scores (AUROC: 0.72-0.77) and GBS (AUROC: 0.72-0.77) and GBS (AUROC: 0.71) were closer associated with rebleeding than AIMS65 (AUROC:0.61) GBS (AUROC:0.84) was superior in	Retrospective design High exclusion rate due to exclusion of patients with: variceal bleeding (32%), who were not scoped (15%), had missing data (14%) or no source of bleeding at EGD (9%)	AIMS65 and Rockall scores were better than GBS for predicting 30-day mortality in UGIB Rockall scores and GBS were better than AIMS65 for predicting rebleeding GBS were better than Rockall scores and AIMS65 for predicting transfusion

					predicting transfusion compared with Rockall scores and AIMS65 (AUROCs:0.60-0.62)		
					Only full Rockall score was able to predict need for endoscopic treatment (AUROC: 0.75 vs 0.52-0.59).		
15.) Park SW, Song YW, Tak DH, et al. The AIMS65 Score Is a Useful Predictor of Mortality in Patients with Nonvariceal Upper Gastrointestinal Bleeding: Urgent Endoscopy in Patients with High AIMS65 Scores. Clin Endosc 2015;48:522-7.	Retrospective, single-centre, cohort study Following scores were evaluated: AIMS65 and Rockall score (not clear if admission or full Rockall score was	Non-variceal UGIB (n=634) Patients bleeding from cancer, patients not scoped, and patients with incomplete data were excluded	- - -	In-hospital mortality Endoscopic haemostasis Rebleeding Blood transfusion LOS Timing of endoscopy	AIMS65 was better than Rockall score in predicting inhospital mortality (AUROCs: 0.94 vs 0.87) 0/434 patients with AIMS65 < 2 died during hospital admission	Patients who were not scoped, had bleeding from varices or upper Gl-cancer, or incomplete data were excluded No long-term follow-up	AIMS65 may be useful in predicting mortality in UGIB Patients with AIMS65<2 have low risk of death during hospitalisation
	used)				In-hospital mortality rate	Retrospective	

					0.94%	design	
						Very low mortality rate (0.9%) – external validity?	
						Unclear if full or admission Rockall score was used	
16.) Taha AS, McCloskey C, Craigen T, Angerson WJ. Antithrombotic	Single-centre retrospective cohort study from UK	Patients presenting to hospital with an ICD-10 code	-	LOS Transfusion Rebleeding	41% were ATD- users	Retrospective study	GBS and Rockall score were less effective in predicting
drugs and non- variceal bleeding outcomes and risk	Following	associated with UGIB	-	30-day mortality	GBS (AUROCs: 0.90 vs 0.85;p<0.005) and Rockall score	Single-centre study	outcome in ATD- users compared with non-users
scoring systems: comparison of Glasgow Blatchford, Rockall and Charlson scores. Frontline Gastroenterol 2016;7:257-263.	scores were evaluated: GBS, Rockall scores, Charlson comorbidity index (CCI)	Performance of scores were compared between users and non-users of antithrombotic			(AUROCs: 0.77 vs 0.61;p<0.005) had lower ability to predict transfusion in users of ATD when compared with non-users	Identification of patients based on administrative data	GBS was better than Rockall score and CCI for predicting need for transfusion or rebleeding
		drugs (ATD)			There was a trend	Inpatients not	

				towards lower	included	Rockall score was
		(2074)		ability of GBS		closer associated
		(n=2071)		(AUROCs: 0.78 vs		with mortality
				0.72) and Rockall		than GBS
				score (AUROCs:		
				0.84 vs 0.73) in		
				predicting mortality		
				in users of ATD		
				when compared		
				with non-users		
				GBS (AUROCs: 0.86		
				vs 0.73;p<0.001)		
				and Rockall score		
				(AUROCs: 0.76 vs		
				0.57;p<0.001) had		
				lower ability to		
				predict rebleeding		
				in users of ATD		
				when compared		
				with non-users		
17.) Thanapirom K,	Prospective,	Consecutive	- Need for	In non-variceal	No data on	GBS had the best
Ridtitid W,	multicenter	patients with	treatment	UGIB, GBS was	mortality as an	ability to predict
Rerknimitr R, et al.	study from	UGIB	(transfusion,	closer associated	isolated	need for
Prospective	Thailiand	undergoing	endoscopic/	with need for	endpoint	treatment in
comparison of		EGD	radialogical/	treatment than		non-variceal
three risk scoring			radiological/	Rockall scores		UGIB
systems in non-	Following		surgical haemostasis)	(AUROCs: 0.77 vs	No data on	
variceal and	scores were	(n=981)	la basaital	0.0.61-0.69;	performance in	
variceal upper	evaluated:		- In-hospital		overall group of	Full-Rockall score

gastrointestinal	GBS and	mortalit	y or p<0.001)	patients with	was superior in
bleeding. J	Rockall scores	rebleedi	ng	UGIB	predicting in-
Gastroenterol					hospital-
Hepatol		- Transfus	In non-variceal		mortality or
2016;31:761-7.		- Endosco	pic bleeding, full-	No data on	rebleeding
		haemos	tasis Rockall score was	need for	(combined
			superior (AUROC:	treatment	endpoint) in non-
			0.80) in predicting	among patients	variceal UGIB
			death or rebleeding	with low GBS	
			(NB: considered as		
			one endpoint) whe	ı	None of the
			compared with	No long-term	evaluated scores
			admission Rockall	follow-up	could predict
			score and GBS	·	outcome in
			(AUROCs 0.66-0.76)		variceal-UGIB
				Patients	
				managed on an	
			All scores had poor	outpatient basis	
			ability to predict	were not	
			need for treatment		
			or death or		
			rebleeding, in		
			patients with		
			variceal bleeding		
			(AUROCs ≤0.66)		
			No deaths or		
			rebleeding occured		
			in patients with GBS		
			≤2		

10 \ Lin LIT Llogb	Datus and ation	Dationto		Dobloodino	Dealall assus he -	Datus an active	Deal all assus la a d
18.) Lip HT, Heah	Retrospective	Patients	-	Rebleeding	Rockall score had	Retrospective	Rockall score had
HT, Huei TJ, et al.	single-center	undergoing	_	Surgery	low ability to	design	poor ability to
Rockall risk score in	cohort study	endoscopy for			predict rebleeding		predict outcome
predicting 30 days	from Malaysia	UGIB	-	30-day mortality	(AUROC: 0.63),		following
non-variceal upper					surgery (AUROC:	Single-centre	NVUGIB in a
gastrointestinal					0.67), and 30-day	study	Malaysian
rebleeding in a	Following	Patients with			mortality (AUROC:		population
Malaysian	score was	variceal			0.58)		
population. Med J	evaluated:	bleeding were				Data limited to	
Malaysia	Rockall score	not included				patients	
2016;71:225-230.						undergoing	
						endoscopy	
		(n=1,323)					
19.) Stanley AJ,	Prospective,	Consecutive	_	Hospital-based	GBS had highest	Many patients	GBS ≤ 1 had high
Laine L, Dalton HR,	international,	UGIB patients		intervention	accuracy (AUROC:	were not	accuracy at
et al. Comparison	cohort study	(n=3012)		(transfusion,	0.86) for predicting	scoped (31%)	predicting need
of risk scoring	,	,		endoscopic	need for hospital-	,	for hospital-
systems for				treatment,	based intervention		based
patients presenting	Following			interventional	or death compared	Inpatients not	intervention or
with upper	scores were			radiology,	with full Rockall	included	death within 30
gastrointestinal	evaluated:			surgery), or 30-	score (0.70), PNED	Included	days
bleeding:	admission/full			day mortality	score (0.69),		
international	Rockall scores,				admission Rockall		
multicentre	AIMS65,		-	Endoscopic	score (0.66), and		GBS had higher
prospective study.	Glasgow			treatment	AIMS65 (0.68).		performance for
BMJ	Blatchford		_	30 day			predicting need
2017;356:i6432.	score (GBS),		_	mortality,			for hospital-
2017,000.10102.	and PNED			rebleeding	GBS ≤ 1 was the		based
	allu FINED			repiecuilig	optimum threshold		intervention or
			-	LOS	to predict survival		death than
	D:((,				without need for		
	Different				without need for		Rockall scores,

	each score were evaluated			intervention with sensitivity 98.6% and specificity 34.6%. None of the evaluated scores were able to predict other outcomes with acceptable (AUROC ≤0.80) ability		None of the evaluated scores were able to predict need for transfusion, endoscopic therapy, or mortality with acceptable ability
20.) Budimir I, Stojsavljević S, Baršić N, et al. Scoring systems for peptic ulcer bleeding: Which one to use? World J Gastroenterol 2017;23:7450- 7458.	Prospective single-centre cohort study from Croatia Following scores were evaluated: GBS, Rockall scores, Baylor bleeding score (BBS)	Consecutive patients with peptic ulcer bleeding (n=1012)	 Need for hospital-based intervention or death < 30 days 30-day mortality Transfusion Surgery Rebleeding	GBS was superior to the pre-endoscopic RS and BBS in predicting need for intervention or death (AUROCs: 0.84 vs 0.57-0.64) For predicting mortality, Rockall scores were better than GBS and BBS (AUROCs: 0.82 vs 0.63-0.67)	Single-centre study Inclusion limited to PUB-patients Inpatients not included	GBS was better than RS and BBS for predicting 1. need for hospital-based intervention or death < 30 days, 2. transfusion, 3. surgery and 4. rebleeding Rockall scores were better than GBS and BBS for predicting 30-day

					GBS were best at predicting need for blood transfusion (AUROC: 0.83), surgery (AUROC: 0.82) and rebleeding (AUROC: 0.75)		mortality
21.) Ko IG, Kim SE, Chang BS, et al.	Retrospective single-center	UGIB-patients assessed in the	-	Need for intervention	GBS and mGBS had highest ability to	Single center	GBS was moderate
Evaluation of scoring systems without endoscopic	study from South Korea	ER	-	30-day mortality	predict need for intervention (AUROC: 0.73)	Study	accurate in predicting need for intervention
findings for		(n=590)			compared with	Retrospective design	in UGIB
predicting outcomes in	Following scores were				admission Rockall score (AUROC: 0.65;		
patients with upper gastrointestinal bleeding. BMC	evaluated: GBS, a modified GBS				p<0.001)	No data available on classified low-	Admission Rockall score was accurate in
Gastroenterol	(excluding				Admission Rockall	risk patients	detechtion of
2017;17:159.	hepatic disease,				score was closer associated with 30-		patients in high risk of death
	cardiac failure, melaena,				day mortality than GBS and mGBS		wihtin 30 days
	syncope, and				(AUROCs: 0.93 vs		
	age), admission Rockall score				0.65-0.66; p<0.001)		
22.) Gu L, Xu F,	Retrospective	UGIB-patients	-	In-hospital	AIMS65 was closer	Patients who	AIMS65 was
Yuan J. Comparison	single-center	who were		mortality	associated with in-	were not	superior to full-

of AIMS65, Glasgow-Blatchford and Rockall scoring approaches in predicting the risk of in-hospital death among emergency hospitalized patients with upper gastrointestinal bleeding: a retrospective observational study in Nanjing, China. BMC Gastroenterol 2018;18:98.	study from China. Following scores were evaluated: AIMS65, GBS and full- Rockall score	scoped (n=799)			hospital mortality (AUROC: 0.91) than full-Rockal score (0.86) and GBS (0.71) AIMS65 performed well in both patients with non- variceal UGIB (AUROC: 0.89) and patients with variceal UGIB (AUROC: 0.94) Sensitivity and specificity for predicting mortality for AIMS65 >2	scoped or had missing data for any risk score were excluded Single center study Retrospective design No long-term follow-up	Rockall score and GBS in predicting in-hospital mortality in non- variceal and variceal UGIB
					for AIMS65 ≥2 were 0.88 and 0.84, respectively		
23.) Banister T,	Retrospective	Patients	-	Need for	GBS was effective in	Retrospective	GBS ≤1 can safely
Spiking J, Ayaru L.	dual-centre	presenting to		hospital-based	predicting need for	design	be used to
Discharge of	study from UK	the ED's with a		intervention or	intervention or		discharge
patients with an		primary		death < 30 days	death < 30 days		patients with
acute upper		diagnosis of			(AUROC: 0.89)	Patients with	UGIB-symptoms
gastrointestinal	Following GBS-	UGIB				missing data	from the ED
bleed from the	thresholds					excluded	without
emergency	were				12% of patients had		performance of

department using an extended Glasgow-Blatchford	evaluated: 0, ≤1, ≤2				GBS=0		in-hospital endoscopy
Score. BMJ Open					26% of patients had		
Gastroenterol 2018;5(1):e000225.					GBS ≤1		GBS ≤1 doubled the number of identified low-
					71% of patients		risk patients
					with GBS ≤1 were		compared with
					safely discharged to		GBS =0
					outpatient		
					endoscopy		
					None of the		
					patients with GBS		
					≤1 needed		
					intervention or died		
					8.1% of patients with GBS=2 had adverse outcomes		
24.) Oakland K,	Retrospective,	Mixture of	-	30-day mortality	CANUKA-score and	Differences in	CANUKA had
Kahan BC, Guizzetti	international,	datasets			admission Rockall	case-mix in	higher accuracy
L, et al.	multicentre	containing	-	30-day	score had similar	included	than GBS in
Development,	cohort study	patients with		rebleeding	ability to predict 30-	datasets	identifying
Validation, and	based on five	non-variceal	-	Surgical or	day mortality		patients dying
Comparative	international	UGIB and		radiological	(AUROCs: 0.77-		within 30 days
Assessment of an	datasets	datasets		intervention	0.79) and were	Patients not	
International	(Canada, UK,	containing			marginally closer	scoped exluded	

Scoring System to	Australia).	patients with	-	Endoscopic	associated with	in some	CANUKA and
Determine Risk of		both variceal		treatment	mortality than GBS	datasets	admission Rockall
Upper		and non-	_	Blood	(AUROC: 0.74;		score had similar
Gastrointestinal	Following	variceal UGIB	_	transfusion	p=0.047)		discriminative
Bleeding. Clin	scores were			transiusion		One dataset	ability for
Gastroenterol	evaluated:		-	Poor outcome		was based on	predicting 30-day
Hepatol	CANUKA	Some datasets		(one of the	GBS was best at	administrative	mortality
2019;17:1121-	score, GBS and	only included		outpoints listed	predicting poor	data	
1129.e2.	admission	patients		above)	outcome (AUROC:		
	Rockall score	undergoing			0.92) compared		Only 3.7% of
		endoscopy			with CANUKA score	Retrospective	patients with
					(0.90; p<0.001) and	design	CANUKA≤1had a
					Rockall score (0.76;		poor outcome
		Fase 1:			p<0.001)		compared with
		Development of					4.7% of patients
		CANUKA score					with GBS≤1, but
		(n=10,639)			Patients with		GBS≤1 identified
					CANUKA≤1 (6.8%)		a considerable
					had low risk of		higher number of
		Fase 2:			death (0%) and low		classified low-risk
		Validation of			risk of poor		patients (23.7%
		CANUKA score			outcome (3,7%)		vs 6.8%)
		and comparison			within 30 days.		
		with GBS and					
		admission					GBS was best at
		Rockall score			Among patients		predicting need
		(n=2,072)			with GBS≤1 (23.7%)		for endoscopic
					1.1% died < 30 days		treatment
					and 4.7% had a		
					poor outcome.		
	1	1					

Huang H, et al. multicenter Comparison of the cohort study UGIB mortality closer associated undergoing superior to GBS with in-hospital endoscopy in predicting in-	Huang H, et al. Comparison of the Glasgow-Blatchford and Rockall Scores for prediction of nonvariceal upper gastrointestinal bleeding outcomes in Chinese patients. Medicine (Baltimore).	multicenter cohort study from China. Following scores were evaluated: GBS and	Patients registered with a principal ICD- 9 diagnosis associated with UGIB who were scoped	mortality - Surgery	(AUROCs ≤ 0.68) Rockall scores were closer associated with in-hospital mortality compared with GBS (AUROCs 0.80-0.84 vs 0.62) All scores had low ability to predict rebleeding (AUROCs ≤0.66) and need for surgery (AUROCs	undergoing endoscopy were included Patients with variceal bleeding (12%) were excluded No long-term follow-up Retrospective	•
---	---	--	--	---------------------	--	--	---

26.) Shafaghi A,	Retrospective	UGIB-patients	-	In-hospital	AIMS65, GBS and	High exclusion	None of the
Gharibpoor F,	single-center	who were		mortality	full-Rockall scores	rate (30%)	evaluated risk
Mahdipour Z,	study from	scoped		Dalalaadina	all had low		scores performed
Samadani AA.	Iran.		-	Rebleeding	discriminative		well in predicting
Comparison of			-	Need for	abilities for	Single center	any outcome
three risk Scores to		Patients with		transfusion	predicting in-	study	
predict outcomes in	Following	missing data for		Fu da casa:	hospital mortality		
upper	scores were	all risk scores	-	Endoscopic	(AUROCs: ≤0.67)		
gastrointestinal	evaluated:	were excluded		treatment		Retrospective	
bleeding; modifying	AIMS65, a		-	Composite		design	
Glasgow Blatchford	modified			endpoint (one	1.3% of patients		
with Albumin. Rom	AIMS65	(n=563)		of the outcomes	with an AIMS65 of		
J Intern Med 2019.	(albumin			mentioned	zero died during	No long-term	
doi: 10.2478/rjim-	threshold			above)	hospitalisation	follow-up	
2019-0016	changed from						
	3 to 3,5), GBS,						
	a modified				Sensitivity and		
	GBS (adding				specificity for		
	albumin to the				predicting in-		
	score) and				hospital mortality		
	Full-Rockall				for AIMS65 ≥2		
	score				were 0.47 and 0.80,		
					respectively		
					Poor ability of all		
					scores for		
					predicting other		
					outcomes (AUROCs		
					≤0.7)		

27.) Kim MS, Choi J, Shin WC. AIMS65 scoring system is comparable to Glasgow-Blatchford score or Rockall score for prediction of clinical outcomes for non-variceal upper gastrointestinal bleeding. BMC Gastroenterol 2019;19:136.	Retrospective single-center study from South Korea. Following scores were evaluated: AIMS65, GBS and Rockall scores	Non-variceal UGIB-patients who were scoped Patients with post-procedure bleeding af endoscopic resection (GIST) were excluded (n=512)	 In-hospital mortality Composite endpoint (in-hospital mortality, ICU stay; rebleeding; blood transfusion; endoscopic treatment; embolisation or surgery) Rebleeding ICU stay Transfusion	AIMS65 and Rockall scores had similar ability to predict inhospital mortality (AUROCs: 0.84 vs 0.74-0.75) There was a trend towards better ability of AIMS65 to predict mortality compared with GBS (AUROCs: 0.84 vs 0.72; p=0.07) AIMS65 < 2 (71%) was associated with very low risk of death during hospital admission (0.6%) Sensitivity and specificity for predicting mortality for AIMS65 ≥2	11% of patients were excluded (missing data, loss of follow- up or post- procedure bleeding) Low event rate (11 deaths) Single center study Retrospective design No long-term follow-up	AIMS65, Rockall scores and GBS have similar ability to predict in-hospital mortality Patients with AIMS65 < 2 have a very low risk of death during hospitalisation (0.6%)
				(0.6%) Sensitivity and specificity for	No long-term	
				and rebleeding (AUROCs ≤0.7)		

	GBS performed well	
	in predicting need	
	for transfusion	
	(AUROC: 0.87)	

Study Ref.	Study type	Patient group	Key outcomes	Key results	Limitation	Conclusion
1.) Stanley AJ, Laine	Prospective,	Consecutive	Hospital-based	GBS had highest	Many patients	GBS ≤ 1 has high
L, Dalton HR, et al.	international,	UGIB patients	intervention	accuracy (AUROC:	were not	accuracy at
Comparison of risk	cohort study	(n=3012)	(Composite	0.86) for predicting	scoped (31%)	predicting need for
scoring systems for			endpoint:	need for hospital-		hospital-based
patients presenting			transfusion,	based intervention		intervention or
with upper	Following scores		endoscopic	compared with full	Inpatients not	death within 30
gastrointestinal	were evaluated:		treatment,	Rockall score (0.70),	included	days
bleeding:	admission/full		interventional	PNED score (0.69),		
international	Rockall scores,		radiology, surgery,	admission Rockall		
<u>multicentre</u>	AIMS65, Glasgow		30-day mortality),	score (0.66), and		GBS has higher
prospective study.	Blatchford score		endoscopic	AIMS65 (0.68).		performance for
BMJ	(GBS), and PNED		treatment, 30 day			predicting need for
2017;356:i6432.			mortality,			hospital-based
			rebleeding, length	GBS ≤ 1 was the		intervention or
	Different		of hospital stay	optimum threshold		death than Rockall
	thresholds of			to predict survival		scores, AIMS65 and
	each score were			without need for		PNED
	evaluated			hospital-based		
				intervention with		
				sensitivity 98.6% and		None of the
				specificity 34.6%.		evaluated scores
						were able to
						predict need for
				None of the		transfusion,

				evaluated scores		endoscopic
				were able to predict		therapy, or
				other outcomes with		mortality with
						, , , , , , , , , , , , , , , , , , ,
				acceptable (AUROC		acceptable ability
				≤0.80) ability		
2.) Laursen SB,	Retrospective,	Consecutive	Hospital-based	GBS ≤ 1 had a high	Retrospective	Use of GBS ≤ 1is
Dalton HR, Murray	international,	UGIB patients	intervention	level of sensitivity	data collection	safe and leads to
IA, et al.	cohort study	(n=2305)	(Composite	(99.2%) and	in one centre	increased number
Performance of			endpoint:	specificity (98.8%) for		of identified low-
new thresholds of			transfusion,	predicting need for		risk patients
the Glasgow	Following scores		endoscopic	hospital-based	Inpatients not	suitable for
Blatchford score in	were evaluated:		treatment,	intervention or	included	outpatient
managing patients	GBS and two age-		interventional	death.		management
with upper	extended		radiology, surgery,			compared to GBS=0
gastrointestinal	versions of GBS		in-hospital			
bleeding. Clin			mortality),	GBS ≤ 1identified a		
Gastroenterol			transfusion,	higher proportion of		A significant
Hepatol	Different		haemostatic	true low-risk patients		proportion of
2015;13:115-21.e2.	thresholds of		intervention	compared with GBS =		patients with GBS ≤
study.	each score were		(endoscopic	0 (24.4 vs 13.6%;		2 experience
	evaluated		treatment,	p<0.001)		adverse outcomes
			surgery,			
			interventional			
			radiology), in-	Among patients with		
			hospital mortality	GBS ≤ 2, 3% had		
				adverse outcomes		
				22.2.2.2		
					ĺ	

3.) Stanley AJ,	Prospective	Consecutive	Hospital-based	Fase 1: GBS had	Retrospective	Use of GBS=0
-----------------	-------------	-------------	----------------	-----------------	---------------	--------------

Ashley D, Dalton	(retrospective	UGIB patients	intervention	higher ability to	data collection	identifies UGIB-
HR, et al.	data collection		(Composite endpoint:	predict need for	in one centre	patients who can
Outpatient	in one centre),		transfusion,	hospital-based		safely be managed
management of	multicentre,	Fase 1:	endoscopic treatment,	intervention than		as out-patients
patients with low-	cohort study	Comparison of	interventional	both Rockall scores	Inpatients not	
risk upper-		performance of	radiology, surgery, in-	(0.92 vs 0.72-0.81)	included	
gastrointestinal		GBS, admission	hospital mortality)			Implementation of
haemorrhage:	Following scores	(pre-endoscopy)				a protocol for non-
multicentre	were evaluated:	and full Rockall		No interventions		admission of
validation and	GBS and Rockall	scores (n=676)		were required		patients with
prospective	scores			inpatients with		GBS=0 – unless
evaluation. Lancet				GBS=0		necessary for
2009 Jan		Fase 2:				other reasons –
3;373(9657):42-7.		Implementation				reduces the
		of outpatient		Fase 2: 22% of		number of hospital
		management of		patients fulfilled		admission with
		patients with		criteria for		UGIB
		GBS=0 (n=572)		outpatient		
				management		
				(GBS=0). 15% of		
				patients avoided		
				hospital admission.		
				Only 40% of		
				patients offered		
				outpatient		
				endoscopy		
				attended the		
				procedure		
		I	I		1	1

4.) Stanley AJ,	Retrospective,	Consecutive	-	Transfusion	GBS were superior	Retrospective	GBS is as effective
Dalton HR, Blatchford O. Multicentre comparison of the Glasgow Blatchford and Rockall Scores in the prediction of clinical end-points after upper gastrointestinal haemorrhage. Aliment Pharmacol Ther 2011;34:470-5.	multicentre cohort study Comparison of performance of GBS, admission (pre-endoscopy) and full Rockall scores	UGIB patients (n=1555)	-	Endoscopic treatment or surgery In-hospital mortality	to both Rockall scores for prediction of transfusion (AUROCs: 0.92 vs 0.69-0.75) GBS performed better than admission Rockall score for prediction of endoscopic or surgical intervention (AUROCs: 0.79 vs 0.63)	data collection in one centre Inpatients not included	as both Rockall scores in predicting death after UGIB GBS is better than admission Rockall score for predicting need for endoscopic or surgical intervention
					GBS performed similar to full Rockall score for prediction of endoscopic or surgical intervention (AUROCs: 0.79 vs 0.76)		

					GBS performed similar to admission and full Rockall scores for prediction of mortality (AUROCs: 0.74- 0.79)		
5.) Rockall TA, Logan RF, Devlin HB, Northfield TC. Risk assessment after acute upper gastrointestinal haemorrhage. Gut 1996;38:316-	Prospective cohort study on a dataset collected as part of a national UK- audit	Consecutive UGIB patients Fase 1: Development of risk score	-	In-hospital mortality Rebleeding	Rockall score was proportionally associated with risk of rebleeding and death during hospitalisation	Lacks external validation No long-term follow-up	Rockall score can be used to estimate patients risk of rebleeding or death during hospitalisation
21.	Following scores were evaluated: Rockall scores	(n=4185) Fase 2: Validation of risk score (n=1625)			Full-Rockall score of ≤ 2 (26% of patients) is associated with very low risk of death during hospitalisation (0.1%) and low rate of rebleeding (4.5%)	No clear definition of rebleeding	A Full-Rockall score of ≤ 2 can be used to identify patients in low risk of poor outcome
6.) Saltzman JR, Tabak YP, Hyett BH, Sun X, Travis AC, Johannes RS. A simple risk	Retrospective cohort study Based on a	Patients registered with a principal diagnosis associated with	-	In-hospital mortality LOS Costs	AIMS65 was proportional associated with in- hospital mortality, LOS and costs	No data on performance or findings at endoscopy	AIMS65 can be used to stratify UGIB-patients by predicting inhospital mortality,

score accurately predicts inhospital mortality, length of stay, and cost in acute upper Gl bleeding. Gastrointest Endosc 2011;74:1215-24.	clinical research database from US (187 participating hospitals) Following score was evaluated: AIMS65	Fase 1: Development of risk score (n=29,222) Fase 2: Validation of risk score (n=32,504)			AIMS65 has a discriminative ability corresponding to AUROC of 0.77 for prediction of inhospital mortality Sensitivity and specificity for predicting mortality for AIMS65 ≥2 were 0.79 and 0.61	Identification of patients based on administrative data No long-term follow-up No data on rebleeding	Patients with AIMS65 <2 have low risk (0.9%*) of death during hospitalisation Patients with AIMS65 ≥2 have a high risk (5.3%) of death during hospitalisation
					AIMS65=0 (19% of patients), low AIMS65 < 2 (60%), and high AIMS65 ≥2 (40%) were associated with inhospital mortality rates of 0.3%, 0.9%*, and 5.3%, respectively	validation	
7.) Hyett BH, Abougergi MS, Charpentier JP,	Retrospective, single-centre, cohort study	Patients registered with a principal ICD-10	-	In-hospital mortality Hospital-based	AIMS65 was superior in predicting in-	Patients with missing data related to risk	AIMS65 is superior to GBS for predicting in-

Kumar NL,		diagnosis		intervention	hospital mortality	scores were	hospital mortality
Brozovic S,	Following scores	associated with		(Composite	(AUROCs: 0.93 vs	excluded	in UGIB
Claggett BL, Travis	_	UGIB and		endpoint:	0.68; p<0.001)	(14.5%)	
AC, Saltzman JR.	were evaluated: AIMS65 and GBS	complete		transfusion,	compared with GBS		
The AIMS65 score	Alivisos aliu GBS	dataset on risk		endoscopic			Patients with
compared with		scores available		treatment,		Retrospective	AIMS65 <2 have
the Glasgow-		(n=278)		interventional	Low AIMS65 <2 and	design	low risk (0.5%) of
Blatchford score				radiology,	high AISM65 ≥2		death during
in predicting				surgery, in-	were associated		hospitalisation
outcomes in				hospital	with 0.5% and 21%	Low sample	
upper GI				mortality)	risk of death during	size	
bleeding.			_	Blood	hospitalisation,		Patients with
Gastrointest			_	transfusion	respectively		AIMS65 ≥2 have a
Endosc				transitusion		Data on	high risk (21%) of
2013;77:551-7.			-	ICU admission		findings at	death during
				Rebleeding	Sensitivity and	endoscopy are	hospitalisation
			-	Kebieeding	specificity for	not presented	
			-	LOS	predicting mortality	·	
				Timin of	for AIMS65 ≥2		
			-	Timing of	were 0.94 and 0.76	Only patients	
				endoscopy		with	
						"confirmed	
					GBS was better	UGIB" were	
					than AIMS65 in	included, but	
					predicting	definition of	
					treatment with	"confirmed" is	
					blood transfusion	unclear	
					(AUROCs: 0.85 vs		
					0.65; p<0.01)		
						No long-term	
						follow-up	
						1011011 up	

				AIMS65 and GBS performed similar in predicing need for hospital-based intervention (AUROCs: 0.62 vs 0.68) and the other secondary outcomes	Identification of patients based on administrative data	
8.) Park SW, Song YW, Tak DH, Ahn BM, Kang SH, Moon HS1, Sung JK, Jeong HY. The AIMS65 Score Is a Useful Predictor of Mortality in Patients with Nonvariceal Upper Gastrointestinal Bleeding: Urgent Endoscopy in Patients with High AIMS65 Scores. Clin Endosc 2015;48:522-7.	Retrospective, single-centre, cohort study Following scores were evaluated: AIMS65 and Rockall score (not clear if admission or full Rockall score was used)	Non-variceal UGIB (n=634) Patients bleeding from cancer, patients not scoped, and patients with incomplete data were excluded	In-hospital mortality Endoscopic haemostasis Rebleeding Blood transfusion LOS Timing of endoscopy	AIMS65 was better than Rockall in predicting inhospital mortality (AUROCs: 0.94 vs 0.87; p-value not listed) 0/434 patients with AIMS65 < 2 died during hospital admission In-hospital mortality rate 0.94%	Patients who were not scoped, had bleeding from varices or upper Gl-cancer, or incomplete data were excluded No long-term follow-up Retrospective design	AIMS65 may be useful in predicting mortality in UGIB Patients with AIMS65<2 have low risk of death during hospitalisation.

						(0.9%) – external validity? Unclear if full or admission Rockall score was used	
9.) Robertson M, Majumdar A, Boyapati R, Chung W, Worland T, Terbah R, Wei J, Lontos S, Angus P, Vaughan R. Risk stratification in acute upper Gl bleeding: comparison of the AIMS65 score with the Glasgow- Blatchford and Rockall scoring systems. Gastrointest Endosc. 2016;83:1151-60.	Retrospective, single-centre, cohort study Following scores were evaluated: AIMS65, GBS, admission and full Rockall score	Patients registered with a principal ICD-10 diagnosis associated with UGIB who were scoped and had complete dataset on risk scores (n=424)	-	In-hospital mortality Hospital-based intervention (Composite endpoint: transfusion, endoscopic treatment, interventional radiology, surgery, in-hospital mortality) Blood transfusion ICU admission Rebleeding LOS	AIMS65 was better than GBS and admission Rockall scores in predicting in-hospital mortality (AUROCs: 0.80 vs 0.76 vs 0.74) AIMS65 and full-Rockall score performed similar in predicting mortality (AUROCs: 0.80 vs 0.78) At threshold ≥3, AIMS65 had a sensitivity of 0.72 and specificity of	Retrospective design Low sample size Patients with incomplete datasets were excluded. Only patients undergoing endoscopy were included No long-term	

	0.77 for predicting	follow-up
	in-hospital	Tollow-up
	mortality	
	inortality	
		Identification
		of patients
	For predicting need	based on
	for hospital-based	administrative
	itnervention,	data
	AIMS65, GBS and	
	full Rockall score	
	had similar low	
	AUROCs ranging	
	between 0.62-0.69	
	AIMS65 was best	
	for predicting ICU	
	stay (AUROC 0.74)	
	compared with GBS	
	(0.70) and Rockall	
	scores (0.62-0.71)	
	GBS was superior in	
	predicting need for	
	transfusion (AUROC	
	0.90) compared to	
	AIMS65 (0.72) and	
	Rockall scores	

				(0.66-0.68)		
				In-hospital		
				mortality rate 4.2%		
10.) Marmo R,	Prospective,	Non-variceal	- 30-day	PNED was closer	Only patients	PNED can be used
Koch M,	multicenter	UGIB	mortality	associated with 30-	undergoing	to predict risk of
Cipolletta L, et al.	cohort study	OGID	mortanty	day mortality than	endoscopy	death < 30days
Predicting	from Italy.			Rockall score	were included	following non-
mortality in non-	,	Fase 1:		(AUROCs: 0.81 vs		variceal UGIB
variceal upper		Development of		0.66; p<0.001)		
gastrointestinal	Validation of	PNED (n=1,020)			Patients with	
bleeders:	PNED-score and	based on data			variceal	International
validation of the	comparison	from a previous		Patients with PNED	bleeding (12%)	validation of PNED
Italian PNED	with (full?)	publication		> 8 had high risk of	were excluded	is needed
Score and	Rockall score	(Marmo R, et al.		death (32%)		
Prospective		Am Jr				
Comparison with the Rockall Score.		Gastroenterol			No true	
Am J		2008)		At threshold >8	external	
Gastroenterol				PNED had a sensitivity of 21%	validation	
2010;105:1284-		Fase 2:		and specificity of		
91.		Validation of		98.7%	Calculation of	
		PNED and		30.770	PNED requires	
		comparison with			data on	
		(full) Rockall			rebleeding,	
		score (n=1,360)			which is	
					unknown	
					initially	
11.) Lu M, Sun G,	Retrospective,	Non-variceal	- In-hospital	Rockall scores were	Only patients	Rockall score is

Huang H, et al.	multicenter	UGIB		mortality	closer associated	undergoing	superior to GBS in
Comparison of	cohort study	ОСП		mortanty	with in-hospital	endoscopy	predicting in-
the Glasgow-	from China.		-	Surgery	mortality compared	were included	hospital mortality
Blatchford and	moni cinna.	Patients		Rebleeding	with GBS (AUROCs	Were meradea	1103pital mortality
Rockall Scores for		registered with a	-	Repleeding	0.80-0.84 vs 0.62)		
prediction of	Following scores	principal ICD-9			0.00 0.04 03 0.027	Patients with	
nonvariceal upper	were evaluated:	diagnosis				variceal	
gastrointestinal	GBS and Rockall	associated with			All scores had low	bleeding (12%)	
bleeding	scores	UGIB who were			ability to predict	were excluded	
outcomes in	300103	scoped			rebleeding	Were excluded	
Chinese patients.		зеореа			(AUROCs ≤0.66)		
Medicine					and need for	No long-term	
(Baltimore).		(n=2,977)			surgery (AUROCs	follow-up	
2019;98:e15716		(11-2,377)			≤0.59)	ιοπονν-αρ	
,					_5.557		
						Retrospective	
						design	
12.) Gu L, Xu F,	Retrospective	UGIB-patients	-	In-hospital	AIMS65 were closer	Patients who	AIMS65 is superior
Yuan J.	single-center	who were		mortality	associated with in-	were not	to full-Rockall
Comparison of	study from	scoped			hospital mortality	scoped or had	score and GBS in
AIMS65, Glasgow-	China.				(AUROC: 0.91) than	missing data	predicting in-
Blatchford and					full-Rockal score	for any risk	hospital mortality
Rockall scoring		(n=799)			(0.86) and GBS	score were	in non-variceal and
approaches in	Following scores				(0.71)	excluded	variceal UGIB
predicting the risk	were evaluated:						
of in-hospital	AIMS65, GBS						
death among	and full-Rockall				AIMS65 performed	Single center	
emergency	score				well in both	study	
hospitalized					patients with non-		
patients with					variceal UGIB		
upper					(AUROC: 0.89) and	Retrospective	

bleeding: a retrospective observational study in Nanjing, China. BMC Gastroenterol 2018;18:98.					variceal UGIB (AUROC: 0.94) Sensitivity and specificity for predicting mortality for AIMS65 ≥2 were 0.88 and 0.84	No long-term follow-up	
J, Shin WC. AIMS65 scoring system is comparable to Glasgow- Blatchford score or Rockall score for prediction of clinical outcomes an	detrospective ingle-center tudy from outh Korea. ollowing scores were evaluated: IMS65, GBS and Rockall cores	Non-variceal UGIB-patients who were scoped Patients with post-procedure bleeding af endoscopic resection (GIST) were excluded (n=512)	- - - -	In-hospital mortality Composite endpoint (in-hospital mortality, ICU stay; rebleeding; blood transfusion; endoscopic treatment; embolisation or surgery) Rebleeding ICU stay Transfusion	AIMS65 and Rockall scores had similar ability to predict inhospital mortality (AUROCs: 0.84 vs 0.74-0.75) There was a trend towards better ability of AIMS65 to predict mortality compared with GBS (AUROCs: 0.84 vs 0.72; p=0.07) AIMS65 < 2 (71%) was associated with very low risk	11% of patients were excluded (missing data, loss of follow- up or post- procedure bleeding) Low power/event rate (11 deaths) Single center study	AIMS65, Rockall scores and GBS have similar ability to predict inhospital mortality Patients with AIMS65 < 2 have a very low risk of death during hospitalisation (0.6%)

					hospital admission (0.6%)	design	
					Sensitivity and specificity for predicting mortality for AIMS65 ≥2 were 0.88 and 0.73	No long-term follow-up	
					All scores were poor in predicting composite endpoint and rebleeding (AUROCs ≤0.7)		
					GBS performed well in predicting need for transfusion (AUROC: 0.87)		
14.) Shafaghi A,	Retrospective	UGIB-patients	-	In-hospital	AIMS65, GBS and	High exclusion	None of the
Gharibpoor F,	single-center	who were		mortality	full-Rockall scores	rate (30%)	evaluated risk
Mahdipour Z,	study from Iran.	scoped	-	Rebleeding	all had low		scores performed
Samadani AA.				_	discriminative		well in predicting
Comparison of			-	Need for	abilities for	Single center	any outcome
three risk Scores	Following scores	Patients with		transfusion	predicting in-	study	
to predict	were evaluated:	missing data for			hospital mortality		

outcomes in upper gastrointestinal bleeding; modifying Glasgow Blatchford with Albumin. Rom J Intern Med. 2019. doi: 10.2478/rjim-2019-0016	AIMS65, a modified AIMS65 (albumin threshold changed from 3 to 3,5), GBS, a modified GBS (adding albumin to the score) and Full-Rockall score	all risk scores were excluded (n=563)	- Endoscopic treatment - Composite endpoint (one of the outcomes mentioned above)	(AUROCs: ≤0.67) 1.3% of patients with an AIMS65 of zero died during hospitalisation Sensitivity and specificity for predicting inhospital mortality for AIMS65 ≥2 were 0.47 and 0.80 Poor ability of all scores for predicting other outcomes (AUROCs ≤0.7)	Retrospective design No long-term follow-up	
15.) Ko IG, Kim SE, Chang BS, et al. Evaluation of scoring systems without endoscopic findings for predicting outcomes in	Retrospective single-center study from South Korea Following scores were evaluated: GBS, a modified	UGIB-patients assessed in the ER (n=590)	 Need for intervention 30-day mortality 	GBS and mGBS had highest ability to predict need for intervention (AUROC: 0.73) compared with admission Rockall score (AUROC:	Single center study Retrospective design No data	GBS is moderate accurate in predicting need for intervention in UGIB Admission Rockall score is accurate in

patients with upper gastrointestinal bleeding. BMC Gastroenterol 2017;17:159.	GBS (excluding hepatic disease, cardiac failure, melaena, syncope, and age), admission Rockall score			0.65; p<0.001) Admission Rockall score was closer associated with 30-day mortality than GBS and mGBS (AUROCs: 0.93 vs 0.65-0.66; p<0.001)	available on classified low- risk patients	detechtion of patients in high risk of death wihtin 30 days
16.) Thanapirom K, Ridtitid W, Rerknimitr R, et al. Prospective comparison of three risk scoring systems in non-variceal and variceal upper gastrointestinal bleeding. J Gastroenterol Hepatol 2016;31(4):761-7.	Prospective, multicenter study from Thailiand Following scores were evaluated: GBS and Rockall scores	Consecutive patients with UGIB However, patients refusing EGD were excluded (n=981)	- Need for treatment (transfusion, endoscopic/ radiological/ surgical haemostasis) - In-hospital mortalty and rebleeding - Transfusion - Endoscopic haemostasis	In non-variceal UGIB, GBS were closer associated with need for treatment than Rockall scores (AUROCs: 0.77 vs 0.0.61-0.69; p<0.001) In non-variceal bleeding, full- Rockall score was superior (AUROC: 0.80) for predicting death and rebleeding when compared with admission Rockall score and GBS	No data on mortality as an isolated endpoint No data on performance in overall group of patients with UGIB No data on need for treatment among patients with low GBS	GBS has the best ability to predict need for treatment in nonvariceal UGIB Full-Rockall score is superior in predicting inhospital-mortality and rebleeding (combined endpoint) in nonvariceal UGIB None of the evaluated scores could predict outcome in

					(AUROCs 0.66-0.76)		variceal-UGIB
					All scores had poor ability to predict need for treatment, or death and rebleeding, in patients with variceal bleeding (AUROCs ≤0.66)	No long-term follow-up Patients managed on an outpatient basis were not included	
					No deaths or rebleeding occured in patients with GBS ≤2		
17.) Bryant RV,	Prospective	Consecutive	-	Endoscopic	GBS and Rockall	High rate of	GBS and Rockall
Kuo P, Williamson	single-center	patients		treatment	scores performed	non-	scores perform
K, et al. Performance of the Glasgow- Blatchford score in predicting	study from South Australia Following scores	hospitalised with UGIB (including patients with inhospital bleeding)	-	Need for further endoscopic treatment	similar in predicting in-hospital mortality (AUROCs: 0.71-0.76)	performance of endoscopy (20%)	similar in predicting in-hospital mortality when also including patients
clinical outcomes	were evaluated:		-	Transfusion		Single-center	with in-hospital
and intervention	GBS and Rockall		_	Rebleeding	GBS and full-Rockall	study	bleeding
in hospitalized	scores	(n=888)		· ·	score were superior		
patients with upper GI			-	Surgery	in predicting need for endoscopic	No. la contra	GBS was best for
bleeding.			-	Death	therapy compared	No long-term follow-up	predicting
Gastrointest					with admission-	Tollow-up	transfusion and as

Endosc 2013;78:576-83.				Rockall score (AUROCs: 0.76 vs 0.66)		good as Full- Rockall score for predicting need for endoscopic therapy
				GBS was best for predicting transfusion (AUROC: 0.81) compared with both Rockall scores (AOROCs: 0.68-0.70)		
				All scores performed poorly in predicting rebleeding and surgery (AUROCs ≤0.71)		
18.) Pang SH, Ching JY, Lau JY, et al. Comparing the Blatchford and pre- endoscopic	Prospective, single-center study	Consecutive outpatients presenting with UGIB who underwent endoscopy	 Need for endoscopic treatment Rebleeding 30-day 	GBS is closer associated with need for endoscopic treatment (AUROC: 0.72) than	Patients who were not scoped were not included	GBS=0 can be used to identify low-risk patients who will not require an immediate EGD
Rockall score in predicting the need for endoscopic	were evaluated: GBS and admission-	(n=1087)	- 30-day mortality	admission Rockall- score (AUROC not presented in paper)	Single center study	

therapy in patients with upper GI hemorrhage. Gastrointest Endosc 2010;71:1134-40.	Rockall score			No patient with GBS=0 (4,6%) required endoscopic treatment, rebled or died wihtin 30 days	No details regarding performance of scores for predicting rebleeding and mortality	
19.) Meltzer AC, Burnett S, Pinchbeck C, et al. Pre-endoscopic Rockall and Blatchford scores to identify which emergency department patients with suspected gastrointestinal bleed do not need endoscopic hemostasis. J Emerg Med. 2013;44:1083-7.	Retrospective, single-centre, cohort study from US Following scores were evaluated: GBS and admission Rockall score	Patients presenting to the ED who had a final ED- diagnosis associated with UGIB (n=690)	- Need for endoscopic haemostasis	2/15 (13%) of admitted patients with a GBS=0 required endoscopic treatment (both cases had MW-lesions) 9/67 (13%) of admitted patients with a Rockall score of zero required endoscopic treatment	No follow-up on patients who were not admitted to hospital (14%) Single center study Retrospective design Identification of patients based on	Low GBS or Rockall score does not exclude potential need for endoscopic treatment in patients presenting to the ER with symptoms of UGIB

						data	
20.) Oakland K, Kahan BC, Guizzetti L, et al. Development, Validation, and Comparative Assessment of an International Scoring System to Determine Risk of Upper Gastrointestinal Bleeding. Clin Gastroenterol Hepatol. 2019;17:1121- 1129.e2.	Retrospective, international, multicentre cohort study based on five international datasets (Canada, UK, Australia). Following scores were evaluated: CANUKA score, GBS and admission Rockall score	Mixture of datasets containing patients with non-variceal UGIB and datasets containing patients with both variceal and non-variceal UGIB Some datasets only included patients undergoing endoscopy Fase 1: Development of CANUKA score (n=10,639)	-	30-day mortality 30-day rebleeding Surgical or radiological intervention Endoscopic treatment Blood transfusion Poor outcome (one of the outpoints listed above)	CANUKA-score and admission Rockall score had similar ability to predict 30-day mortality (AUROCs: 0.77-0.79) and were marginally closer associated with mortality than GBS (AUROC: 0.74; p=0.047) GBS was best at predicting poor outcome (AUROC: 0.92) compared with CANUKA score (0.90; p<0.001) and Rockall score (0.76; p<0.001) Patients with CANUKA<1 (6.8%)	Differences in case-mix in included datasets Patients not scoped exluded in some datasets One dataset was based on administrative data Retrospective design	CANUKA has higher accuracy than GBS in identifying patients dying within 30 days CANUKA and admission Rockall score have similar discriminative ability for predicting 30-day mortality Only 3.7% of patients with CANUKA≤1had a poor outcome compared with 4.7% of patients with GBS≤1, but GBS≤1 identified a considerable
		Fase 2: Validation of CANUKA score			Patients with CANUKA≤1 (6.8%) had low risk of death (0%) and low risk of poor outcome (3,7%)		considerable higher number of classified low-risk patients (23.7% vs

and comparison	within 30 days	6.8%)
with GBS and	(0%).	
admission		
Rockall score		GBS was best at
(n=2,072)	Among patients	predicting need
	with GBS≤1 (23.7%)	for endoscopic
	1.1% died < 30 days	treatment
	and 4.7% had a	
	poor outcome.	
	provide the second	
	GBS was marginally	
	best at predicting	
	need for	
	endoscopic	
	treatment (AUROC:	
	0.78) compared	
	with CANUKA score	
	(0.77; p=0.047) and Rockall score (0.66;	
	p<0.001)	
	All scores	
	performed poorly	
	in predicting	
	rebleding (AUROCs	
	≤ 0.68)	

Study Ref.	Study type	Patient group	Key outcomes	Key results	Limitation	Conclusion
Na HK, et al. Erythromycin infusion prior to endoscopy for acute nonvariceal upper	Randomized controlled trial	43 patients were randomly assigned: 14 patients in the erythromycin group; 15	Primary outcome satisfactory visualization. Secondary outcomes - identification of a	Overall satisfactory visualization was achieved in 81% of patients: 92.8% in the erythromycin	- Small patient group - patients excluded with severe comorbidities or	Intravenous EM infusion prior to emergency endoscopy for acute NVUGIB may be of help to
gastrointestinal bleeding: a pilot randomized controlled trial. Korean J Intern Med. 2017 Nov;32(6):1002- 1009		patients in the gastric lavage group; and 14 patients in the erythromycin + gastric lavage group	- the success rate of hemostasis - duration of endoscopy - complications related to erythromycin infusion or gastric lavage - number of transfused blood units - rebleeding rate - bleeding-related mortality	group; 60.0% in the gastric lavage group; and 92.9% in the erythromycin + gastric lavage group, respectively (p = 0.055). The identification of a bleeding source was possible in all cases. The success rate of hemostasis, duration of endoscopy, and number of transfused blood units did not significantly differ between groups. There were no complications.	unstable vital signs	provide satisfactory endoscopic visualization

Rahman R, et al. Pre-endoscopic erythromycin administration in upper gastrointestinal bleeding: an updated meta-analysis and systematic review. Ann Gastroenterol. 2016 Jul-Sep;29(3):312-7	Systematic review and meta- analysis of six randomized controlled trials (search run on nov 2015)	n=598 Patients received 250mg or 3- 4mg/kg erythromycin in 20-90min before endoscopy was performed	Primary outcomes - gastric visualization, - need for second- look endoscopy - units of blood transfused - length of endoscopy - length of hospital stay - need for emergent surgery.	Rebleeding occurred in three patients (7.0%). Bleeding-related mortality was not reported. Erythromycin administration showed statistically significant improvement in adequate gastric mucosa visualization (OR 4.14; 95% CI: 2.01-8.53, P<0.01) while reduced the need for a second-look endoscopy (OR 0.51; 95% CI: 0.34-0.77, P<0.01) and length of hospital stay (MD -1.75; 95% CI: -2.43 to -1.06, P<0.01). Duration of procedure (P=0.2), units of blood transfused	- the doses of erythromycin varied among the studies, ranging from 125 mg to 250 mg - two of the four outcomes (gastric visualization and units of blood transfused) demonstrated significant heterogeneity - data for gastric visualization, only adequate versus inadequate was utilized and degrees of visualization beyond that was	Erythromycin before endoscopy in patients with acute UGIB significantly improves gastric mucosa visualization while reducing hospital stay and the need for a second-look endoscopy
--	---	--	--	---	---	---

	(P=0.08), and	not assessed.	
	need for		
	emergent surgery		
	(P=0.88) showed		
	no significant		
	differences.		

Study I	Ref.	Study Type	Patient Group	Key Outcomes	Key Results	Limitations	Conclusions
1)	Chaudhuri D, Bishay K, Tandon P, et al. Prophylactic endotracheal intubation in critically ill patients with upper gastrointestinal bleed: a systematic review and meta-analysis. JGH Open 2019	Systematic review and meta-analysis	Studies including patients older than 16 years undergoing EGD for severe UGIB (defined as patients who needed immediate endoscopy or admission to an ICU), comparing prophylactic intubation (PI) to no PI.	Cardiac events (composite outcome of myocardial infarction and cardiac arrest), pneumonia, LOS (in hospital and ICU) and death.	7 studies (5662 patients) included in the meta-analysis (all retrospective): - PI was associated with increased mortality (OR 2.59) - hospital LOS was higher in the PI group - PI showed higher rates of pneumonia (OR 6.58) and cardiac events (OR 2.11), and a trend toward increased ICU LOS	- small number of studies included - retrospective nature of the studies	Prophylactic intubation in severe UGIB is associated with a greater risk of pneumonia, LOS, death, and cost compared to endoscopy without intubation.
2)	Alshamsi F, Jaeschke R, Baw B, et al. Prophylactic endotracheal intubation in patients with upper gastrointestinal bleeding undergoing endoscopy: a	Systematic review and meta-analysis	Studies including patients with UGIB requiring emergent EGD,	Aspiration, pneumonia, mortality, hospital length of stay	10 studies (6068 patients) included in the meta-analysis: - PEI was	Lack of adjustment for the severity of clinical situation	Low to very low quality evidence from observational studies suggests that PEI in the

systematic review and	comparing	associated	setting of UGIB
meta-analysis. <u>Saudi J</u>	those who	with	may be
Med Med Sci 2017; 5(3):	underwent	increased	associated with
201–209	prophylactic	risk of	higher rates of
	endotracheal	aspiration	respiratory
	intubation	(OR 3.85;	complications
	(PEI) and	6 studies)	and, less likely,
	those who did	DELWas	with increased
	not undergo	- PEI was	mortality.
	PEI.	associated with	
		increased	
		risk of	
		pneumoni	
		a (OR	
		4.17; 5	
		studies)	
		studies)	
		- PEI did	
		not affect	
		mortality	
		(8 studies)	
		251	
		- PEI	
		increased	
		the	
		hospital	
		length of	
		stay (6	
		studies)	
		- No	
		difference	
		s between	

_	T	1	T	T	т	T
				variceal		
				vs. non-		
				variceal		
				bleeding		
3) Almashhrawi AA, Rahman R, Jersak ST, et al. Prophylactic tracheal intubation for upper GI bleeding: a meta-analysis. World J Metaanal 2015; 3(1): 4-10	Meta-analysis	Studies examining the impact of prophylactic endotracheal intubation (PEI) on UGIB outcomes	Pneumonia within 48 h, mortality, aspiration	4 studies (367 patients): - PEI associated with increased risk of pneumoni a (OR 3.13; 3 studies) - PEI was not associated with higher mortality or aspiration , but sensitivity analyses demonstr ated statisticall	Small number of included studies; all studies were observational; significant heterogeneity was identified in 2 of the 3 outcomes (mortality and aspiration)	Pneumonia within 48 h is more likely in UGIB patients who received prophylactic endotracheal intubation prior to endoscopy. Trends showing higher odds of mortality and aspiration in those prophylactically intubated were noted but no statistically significant differences were seen
				У		

				significant worse outcomes in those undergoin g prophylac tic intubation		
4) Perisetti A, Kopel J, Shredi A, et al. Prophylactic preesophagogastroduodenos copy tracheal intubation in patients with upper gastrointestinal bleeding. Proc (Bayl Univ Med Cent). 2019 15;32(1):22-25	Single-center retrospective study from 2000 to 2013	Adult (>18 years) patients admitted or transferred to the ICU who had acute UGIB, in whom endotracheal intubation (ETI) was performed within 48 hours before or during EGD for UGIB with an indication of airway protection or shock or respiratory	Primary outcome: pulmonary aspiration Secondary outcomes: myocardial infarction, pneumonia, acute respiratory distress syndrome, cardiogenic pulmonary edema, sepsis, mortality, hospital days	Of the 69 patients undergoing pre-EGD ETI 38% had pulmonary aspiration, 9% myocardial infarction, 9% ARDS, 7% pulmonary edema, the median length of hospital stay was 10 days, and the mortality rate was 22%.	Dependence of information recorded in the medical records; small sample size; the patients who were intubated could have been more critically ill; the diagnosis of aspiration in a critically ill patient can be difficult; singlecenter study	The incidence of pulmonary aspiration with pre-EGD tracheal intubation was high (38%). Cardiopulmonary complications including myocardial infarction, acute respiratory distress syndrome, and pulmonary edema were high in intubated patients.

	failure		

First author,	Study design,	Intervention/	Outcome	Remarks
year, ret	participants (n)	Exposure		
year, ref Riha, 2019 [1]	R (180)	PPI+octreotide vs. PPI	Median hospital LOS: 6.1 vs. 4.9 days (NS) Median ICU LOS: 2.3 vs. 1.9 days (NS) Rebleeding rates: 9% vs. 12% (NS) Mortality: 6.7% vs. 5.6% (NS) Median units of pRBCs for blood	NS differences
			transfusions: 3 vs. 2 (NS) Multivariate analysis: all remained NS	

Abbreviations: PPI, proton pump inhibitor; ICU, intensive care unit; LOS, length of stay; pRBCs, packed red blood cells; NS, nonsignificant.

Study Ref.	Study type	Patient group	Key outcomes	Key results	Limitation	Conclusion
Nagata N, Sakurai T, Moriyasu S, Shimbo T, Okubo H, Watanabe K, et al. Impact of INR monitoring, reversal agent use, heparin bridging, and anticoagulant interruption on rebleeding and thromboembolism in acute gastrointestinal bleeding. PLoS One. 2017;12:e0183423.	Retrospective cohort study	314 patients with acute upper or lower GIB: 157 anticoagulant users and 157 age-, sex-, and important risk- matched non- users.	The risks of rebleeding and thromboembolism in anticoagulated patients with acute GIB	No differences seen in rates of rebleeding (13.4% vs. 15.9%, P=0.52) or thromboembolism (5.7% vs. 3.2%, P=0.68) between users and nonusers. Among anticoagulant users, early endoscopy (<24 h post-onset) was not associated with rebleeding (OR, 0.7; 95% CI, 0.3-1.8), thromboembolic events (OR, 0.5; 95% CI, 0.1-2.1) or endoscopy-related adverse events (0%); rebleeding was also not associated with an INR ≥2.5 (OR, 0.7; 95% CI, 0.2 to 2.3)	Retrospective analysis Mixed patients for all types of bleeding	Endoscopy appears to be safe for anticoagulant users with acute GIB compared with nonusers. Patient background factors were associated with rebleeding, whereas anticoagulant management factors (e.g. INR correction, reversal agent use, and drug interruption) were associated with thromboembolism. Early intervention without reversal agent use, heparin bridge, or anticoagulant interruption may be warranted for acute GIB.

Study Ref.	Study type	Patient group	Key outcomes	Key results	Limitation	Conclusion
Shingina A, Barkun AN,	Systematic	Non-variceal	To assess the	Only 2 studies	Only 2 studies	An elevated INR at initial
Razzaghi A, et al.	review	upper GI	usefulness of	were valid, but	were	presentation does not
Systematic review: the		bleeding with	the initial INR in	reported	considered	predict rebleeding in
presenting		INR values	patients with NVUGIB.	disparate, and conflicting results	valid and had contradictory	NVUGIB.
international			INVOGID.	on predictive	results	
normalised ratio (INR)				ability. An INR	resuits	
as a predictor of				>1.5, significantly		
outcome in patients				predicted		
with upper				mortality (OR:		
nonvariceal				1.96; 95% CI:		
gastrointestinal				1.13-3.41).		
bleeding. Aliment						
Pharmacol Ther						
2011;33:1010–8.						
Study Ref.	Study type	Patient group	Key outcomes	Key results	Limitation	Conclusion
Sung JJ, et al. Asia-	Clinical	NA	- PPI effect	Statement 5:	NA	NA
Pacific working group	Guideline	Dationto with	A matingle to loat	Patients with		
consensus on non-		Patients with NVUGIB.	- Antiplatelet and	haemodynamic		
variceal upper		INVOGIB.	anticoagulan	shock and signs of		
gastrointestinal			t effects	upper		
bleeding: an update			t enects	gastrointestinal		
<u>2018</u>			- rebleeding	bleeding should		
Gut 2018. PMID			- need for	be offered urgent		
29691276				endoscopy after		
23031270			surgery			
				resuscitation and		

	- mortality	stabilization.	
	- need for		
	intervention	Statement 13: In	
	_	patients receiving	
		dual antiplatelet	
		agents, at	
		least one	
		antiplatelet agent should be	
		resumed in cases	
		of upper	
		gastrointestinal bleeding	
		Statement 14:	
		Among direct oral	
		anticoagulant	
		(DOAC) or warfarin	
		users with high	
		cardiothrombotic	
		risk who develop ulcer bleeding,	
		DOAC or warfarin	
		should be	
		resumed as soon	
		as haemostasis is	
		established	
1			

Sostres C, Marcén B,	Retrospective	871 patients	Rebleeding,	Resumption of	Retrospective	Resumption of
Laredo V, et al. Risk of	cohort analysis	with GIB (25%	vascular events	therapy was	analysis	anticoagulant or
	•		<u>.</u>	therapy was associated with a higher risk of rebleeding (HR 2.184; 95% CI: 1.357-3.515) but a lower risk of an ischaemic event (HR 0.626; 95% CI: 0.432-0.906) or death (HR 0.606; 0.453-0.804) in a multivariable COX hazards	· ·	·
				proportional models		

Study Ref.	Study type	Patient group	Key outcomes	Key results	Limitation	Conclusion
Barkun AN, Almadi	Guideline	NA	- PPI effect	In patients with	NA	In patients with
M, Kuipers EJ, et al.			A maticulate a last a mad	previous ulcer		previous ulcer
Management of			- Antiplatelet and	bleeding receiving		bleeding receiving
Nonvariceal Upper			anticoagulant	cardiovascular		cardiovascular

Gastrointestinal Bleeding: Guideline Recommendations From the International Consensus Group [published online ahead of print, 2019 Oct 22]. Ann Intern Med. 2019;10.7326/M19- 1795. doi:10.7326/M19- 1795		effects - rebleeding - need for surgery - mortality - need for intervention -	with single or dual antiplatelet therapy, we suggest using PPI therapy vs. no PPI therapy.		prophylaxis with single or dual antiplatelet therapy, we suggest using PPI therapy vs. no PPI therapy.
---	--	---	--	--	--

Study Ref.	Study type	Patient group	Key outcomes	Key results	Limitation	Conclusion
Staerk L, Lip GY, Olesen	Retrospective	Danish cohort	the risks of all	Compared with	Retrospective	Among patients
JB, et al. Stroke and	cohort study	study (1996-	cause mortality,	non-resumption of	analysis	with atrial
recurrent haemorrhage		2012) included	thromboembolism,	treatment, a	Mixed patients	fibrillation who

associated with	all patients	major bleeding,	reduced risk of all	for all types of	experience
antithrombotic	(4602) with	and recurrent	cause mortality	bleeding	gastrointestinal
treatment after	atrial fibrillation	gastrointestinal	was found in		bleeding while
gastrointestinal	discharged from	bleeding associated	association with		receiving
bleeding in patients	hospital after	with restarting	restart of oral		antithrombotic
with atrial fibrillation:	gastrointestinal	antithrombotic	anticoagulation		treatment;
nationwide cohort	bleeding while	treatment after	(HR 0.39, 95% CI		subsequent restart
study. <i>BMJ</i> .	receiving	gastrointestinal	0.34-0.46), an		of oral
2015;351:h5876.	antithrombotic	bleeding in patients	antiplatelet agent		anticoagulation
Published 2015 Nov 16.	treatment.	with atrial	(0.76, 0.68-0.86),		alone was
doi:10.1136/bmj.h5876		fibrillation	and oral anti-		associated with
F			coagulation plus an		better outcomes
Format:			antiplatelet agent		for all cause
			(0.41, 0.32 -0.52),		mortality and
			and a reduced risk		thromboembolism
			of		compared with
			thromboembolism		patients who did
			was found in		not resume
			association with		treatment. This
			restart of oral		was despite an
			anticoagulation		increased
			(0.41, 0.31- 0.54),		longitudinal
			an antiplatelet		associated risk of
			agent (0.76, 0.61 -		bleeding.
			0.95), and oral		
			anticoagulation		
			plus an antiplatelet		
			agent (0.54, 0.36-		
			0.82). Restarting		
			oral		
			anticoagulation		
			alone was the only		

		regimen with an increased risk of major bleeding (1.37, 1.06- 1.77) compared with non-resumption of treatment;.		
	-	-	1	

Ghaffari S, Parizad R, Tajlil A, Nader ND. Clin Drug Investig. 2019 Jun;39(6):533- 542.				characteristic plot for ATRIA was 0.654 ± 0.034 and for ORBIT was 0.604 ± 0.033. The predictive power of NBLDSCOR was superior to ATRIA and ORBIT (p < 0.001),		patient population.
Management of	Systematic	Articles referring	To evaluate	9 studies were	-	Anticoagulation
<u>Oral</u>	review	to patients with	current clinical	identified. Four		therapy
Anticoagulation		GIB taking	evidence for	retrospective		resumption is
Therapy After		anticoagulants	management of	cohort studies		recommended,
Gastrointestinal			oral	showed that		with resumption
Bleeding: Whether			anticoagulation	resuming		being considered
to, When to, and			therapy after	anticoagulation		between 7 and 14
How to Restart an			gastrointestinal	therapy was		days following GIB
<u>Anticoagulation</u>			bleeding (GIB)	associated with		regardless of the
Therapy.			with an emphasis	significantly lower		therapy chosen.
Kido K, Scalese MJ.			on whether to,	rate of thromb-		
Rido Ri Scalese IVIS.			when to, and how	oembolism (TE).		
Ann Pharmacother.			to resume an	Meta-analyses		
2017			anticoagulation	and prospective		
Nov;51(11):1000-			therapy.	cohort studies		
1007				also supported		
				this finding. Two		
				retrospective		
				cohort studies		
				indicated an		

	increase in GIB when anti- coagulation reinitiation occurred in less than 7 days without a decrease in TE. Resuming therapy between 7 and 15 days did not demonstrate a significant increase in GIB or TE. A large retrospective study showed that
	Resuming therapy
	days did not
	significant
	increase in GIB or
	TE. A large
	retrospective
	apixaban was
	associated with
	the significantly
	lowest risk of GIB
	compared with
	both rivaroxaban
	and dabigatran.

Study Ref.	Study type	Patient group	Key outcomes	Key results	Limitation	Conclusion
Peloquin, J.M., et al. Diagnostic and	Retrospective	A total of 134	Predictors of	On multivariate		This study
Therapeutic Yield of Endoscopy in	cohort	patients	endoscopically	logistic	Retrospective	demonstrates

Patients with Elevated INR and Gastrointestinal Bleeding. Am J Med 129, 628-634 (2016).	analysis	treated with warfarin with INR 3.5 or greater (mean 5.5, range 3.5-17.1) who presented with symptoms of gastrointestinal bleeding, most commonly as melena or symptomatic anemia	identifiable lesions, interventions, and outcomes.	regression, concomitant antiplatelet therapy (odds ratio [OR] 2.59; 95% confidence interval [CI], 1.13-5.94), timing of EGD within 12 hours of presentation (OR 3.71; 95% CI, 1.05-13.08), and INR level (OR 0.79; 95% CI, 0.64-0.98) were the only significant independent predictors of identifying a source of bleeding.	analysis, limited sample size Mixed patients for all types of bleeding	that the relationship between INR elevation and identification of a bleeding source or endoscopic intervention at EGD are antiparallel.
Shim CN, Chung HS, Park JC, et al. Is Endoscopic Therapy Safe for Upper Gastrointestinal Bleeding in Anticoagulated Patients With Supratherapeutic International Normalized Ratios?. <i>Am J Ther</i> . 2016;23(4):e995–e1003. doi:10.1097/MJT.0000000000000000000	Retrospective cohort analysis	anticoagulated patients who underwent endoscopic treatment for UGIB were enrolled in the	To evaluate the safety of endoscopic therapy for UGIB in anticoagulated patients with supratherapeutic	There were no significant differences in therapeutic outcomes between patients with INR within the	Retrospective analysis, limited sample size Mixed patients for all types of	We should consider endoscopic therapy for UGIB in anticoagulated patients, irrespective of

study. Patients	INR in terms of	therapeutic	bleeding	INR at the
were divided	rebleeding and	range and those	G	time of
into 2 groups	therapeutic	with		endoscopic
based on the	outcomes.	supratherapeutic		therapy.
occurrence of		INR.		, ,
rebleeding		Supratherapeutic		
within 30 days		INR at the time		
of the initial		of endoscopic		
therapeutic		therapy did not		
endoscopy: no-		change		
rebleeding		rebleeding and		
group (n = 168)		therapeutic		
and rebleeding		outcomes.		
group (n = 24)		outcomes.		
group (11 – 24)				

Reference & year/country	Study design	Patients & Intervention	Outcomes	Results	limitations	Conclusions & Comments
Ramos, Gastrointest Endosc 2018;	Retrospective cohort study.	144 Patients with GI bleeding & platelets 20- 50x10 ⁹ /L. Included cirrhotics & non- cirrhotics	Yields, procedure adverse events, Tx, rebleeding & mortality	Median platelet count was 41x10°/L. Diagnostic yield 68% (p=0.04) & therapeutic yield 60% (NS). Initial haemostasis 94% and one adverse event. Median red cell & plt. Tx fell after intervention. Rebleeding 22% & 30% at 30 days & 1 year. INR >2 predicted rebleeding. All-cause mortality: 19% at 1 month & 30% at 1 year. GIB mortality only 3% & 4% respect. INR>2, APTT >38 secs, low BP, ITU admission & lung comorbidities predicted mortality	Retrospectiv e design	Endo for GIB in patients with low platelets appears safe (cirrhosis & non-cirr.). There are moderated diag. & therap. yields, high haemostasis rates and reduced Tx requirements. Rebleeding and mortality are high
Zakko, Clin Gastroenterol Hepatol 2017; USA	Retrospective cohort study. Cases who received platelet transfusions were matched with controls. Multivariate analysis used.	204 GI bleeding (57% UGIB) patients taking antiplatelet meds. (and count >100x10°/L admitted to Yale-New Haven (2008-2013)	Recurrent GI bleeding	Multivariate analyses showed higher mortality if platelets given (OR 5.57; 95% CIs 1.52-27.1). Higher proportion of major CVS events and also hospital stay >4 days in patients given platelets seen on univariate analysis, but not multivariate analysis.	Retrospectiv e design	Platelet transfusion (in absence of thrombocytopenia) in UGIB patients on antiplatelet meds did not reduce rebleeding but was associated with higher mortality.
Li, Lancet	Prospective population-	3166 patients (50% >75yrs)	Bleeding type, severity, &	405 first bleeding events (218 GIB) during 13 509 patient yrs.	Cohort study (although	If on antiplatelet meds without routine PPI, risk of

2017;	based cohort	with 1st TIA,	outcomes <10	follow-up.	large)	major bleeding is high in
UK	study	ischaemic cva, or MI treated with antiplatelets	years. Also assessed NNT to prevent UGIB with PPI	314 (78%) admitted to hospital. Risk of major bleeding increased with age (HR if >75ys: 3.10 (p<0.0001); and fatal bleeding 5.53 (p<0.0001) Risk of major GIB >75yrs: HR 4.13 (p<0.0001), esp if disabling or fatal (10.26; p<0.0001). If >75yrs, major GIB were mostly disabling or fatal. NNT for PPI to prevent fatal or disabling UGIB over 5 yrs was 25 if >85yrs vs 338 if <65yrs.		older patients. Half the major bleeds in elderly are GIB, therefore data supports use of routine PPI in this group.

Reference & year/country	Study design	Patients & Intervention	Outcomes	Results	limitations	Conclusions & Comments
Connolly, NEJM 2019	Multicentre prospective cohort study	352 patients with acute major bleeding on factor Xa inhibitors given andexanet (bolus then 2- hour infusion)	Change in Xa activity, and hemostatic efficacy at 12 hrs.	Mean age 77yrs. IC bleeding in 64%, GIB in 26%. 92% reduction in Xa activity. Excellent or good hemostasis seen in 82%. 30-day mortality in 14%; thrombotic event in 10% at 30 days. Reduced Xa activity did not predict hemostatic efficacy (although modestly predictive in IC bleed	Cohort study	In major bleeding, Andexanet markedly reduced anti-Xa activity and 82% had good- excellent hemostasis at 12 hours.
Van der Wall,	Prospective	137 patients on	4-hr reversal	35% was proven UGUB. 84% of GIB was	Cohort	Idarucizumab showed

Circulation	multicentre	dabigatran with	of anticoag	major/life-threatening.	design	rapid & complete
2019	cohort study	uncontrollable GIB requiring reversal with Idarucizumab (2014-16)	effect; also hemostasis, rebleeding, thrombo- embolic events and mortality	Complete reversal of effect seen in 97.5%. Hemostasis in 68.7% after 2.4 hrs. 4.4% had thrombo-embolic event <90 days. 14.6% died		reversal of dabigratan activity in nearly all patients with GIB.
Serengupta, 2018; Clin Gastroenterol Hepatol	Retrospective analysis (2010-2014) assessing rebleeding and thromboembolism in patients with GIB on DOACs	1338 patients on DOACs hospitalized with GIB	Rebleeding and thromboemb.	Not restarting DOAC ass with older patients, heart failure, Tx & ITU stay. Restarting DOAC <30 days was not associated with thrombo-emb. or rebleeding. On Multivariate, prev thrombo-embol. ass. with further thrombo-emb; and Thienopyridine use ass. with rebleeding. More patients resuming rivaroxaban had rebleeding compared with other DOACs (p=0.04)	Retrospecti ve study	Resuming DOAC not associated with thrombo-embolism or rebleeding
Schulman , Thromb Haemost 2018; Canada	Prospective cohort study in 9 hospitals	66 patients on Xa inhibitors (apixaban or rivoroxaban) given 2000 units PCC for major bleeding (16 had GI bleeding)	Haemostatic effectiveness at day 1 and 30- day follow- up.	Haemostatic effectiveness good in 65% & poor or none in 15%. For GI bleeding the figures were 695 and 19% respectively. Overall 9 deaths at 30 days and 5 major thromboembolic events. Post hoc analysis: reversal effective in 68%, ineffective in 32% by Int Soc. Thromb/Haem criteria.	Observatio nal study. Haemostati c effectivene ss rather subjective. Post hoc assessment .	PCC may have a beneficial effect in major bleeding in patients taking Xa inhibitors, but risk of thromboembolism needs taken into account.
Nagata, Gut	Japanese	16977 patients	GI bleeding	In matched score analysis of 5046 pairs,	Database	Post endoscopy GI

2018;	procedure	undergoing 13	and Thrombo-	warfarin group had more GI bleeding than	analysis	bleeding higher in
	database	high risk endo	embolism	DOACs (12% vs 9.9%; p=0.002) with no		warfarin than DOAC.
Japan	with	procedures on		difference in thrombo-embolism (5,4% vs		Heparin bridging did
	propensity	peri-op warfarin		4.7%) or mortality (5.4% vs 4.7%). Risks of		not appear helpful.
	matching to	or DOAC (2014-		bleeding higher if warfarin or DOAC used +		
	compare	15)		heparin bridging vs DOAC alone, also with		
	bleeding &			higher thrombo-embo. Highest bleeding		
	thrombotic			risk seen in ESD, EMR, VBL or injection		
	events			sclerotherapy. Moderate in colonic		
				polypectomy, ERCP & EUS-FNA		
Milling, Am J	Retrospectiv	56 patients on	Overall	43% overall received various factor or	Retrospecti	Variable approach to
Emerg Med	e 5-centre	Xa inhibitors	transfusions &	plasma products.	ve cohort	management noted.
2018;	review of	and life-	other	30-day mortality was 21%.	study	
USA	cases of	threatening	management;	30-day mortanty was 21%.		
USA	major	bleeding (52%	30-day	Re-anticoagulation <30 days in 41%.		
	bleeding	were GI bleeds)	mortality			
	with Xa					
	inhibitors.					
Pollack, NEJM	Multicentre	503 patients on	Reversal of	301 and 202 in groups A and B	Cohort	In emergency situation,
2017	prospective	dabigatran with	anticoagulant	respectively. Median max reversal was	study	idarucizumab rapidly,
	cohort study	uncontrolled	effect with	100%. Median time to cessation of		durably and safely
		bleeding (group	idarucizumab;	bleeding in group A was 2.5 hrs. Median		reversed anticoagulant
		A; 45% GIB, 33%	hemostasis,	time to procedure in group B was 1.6 hrs,		effect of dabigratan.
		IC bleed) or	thrombotic	with peri-procedural hemostasis assessed		
		about to	events and	as normal in 93%. At 90 days, thromboitic		
		undergo an	mortality	events seen in 6.3% and 7.4% in groups A		
		urgent		and B; with mortality 18.8% and 18.9%		
		procedure				
		(group B)				
Pannach, J	Prospective	143 patients on	Management,	Upper GI bleeding confirmed in 44.1% of	Cohort	GI bleeding in patients

Gastroenterol	cohort study	DOACs with	length of stay	DOAC patients. UGIB commoner in the 185	study with	on DOACs appears
2017;		major GI	and in-hospital	patients VKA patients and the 711	historical	different from that on
Germany		bleeding.	mortality.	antiplatelet patients. PUB seen in 27% of	comparison	VKA or antiplatelet Rx
			Results	the DOAC group vs 54% in VKA and 61% in	group	and has better short-
			compared	antiplatelet groups. DOAC group had lower		term prognosis
			with a	resource utilisation, shorter stay and lower		
			historical	mortality (1.6%) vs others		
			cohort of			
			patients with			
			GI bleeding			
Nagata, PLoS One 2017; Japan.	Retrospectiv e single centre cohort study	314 patients with UGIB (157 anticoag users and 157 matched controls	Rebleeding and thrombo- enbolism	No endo related adverse seen and no difference in rate of endoRx, Tx, rebleeding or thrombo-embol. Rebleeding associated with low platelets and low dose aspirin, but not HAS-Bled score, heparin bridge or INR>2.5. Thrombo-embolism associated with INR>2.5, reversal agent used, and anticoag interruption, but not CHA2DS2-VASc. Tx need was higher in warfarin than DOAC users.	Retrospecti ve and single centre design	Endoscopy for UGIB appears safe for anticoag users. Rebleeding appears to be associated with patient factors, with thrombo-embolism associated with anticoag factors (INR correction, reversal agents, drug interruption). Therefore, early intervention without reversal agents or interruption may be best
Milling, Ann	Multicentre,	191 patients	Mortality and	12 patients died (8 had GI bleeding). Red	Retrospecti	Use of reversal
Emerg Med	retrospective	with dabigatran	management	cell and plasma transfusion common, but	ve chart	strategies was low,
Č		related major		only 11 (6%) were given purified		

2017; USA	study	bleeding (62% had GI bleeding)		coagulation factors.	review	although mortality low.
Sin, J Crit Care 2016; USA	Retrospectiv e study	93 adults receiving 4- factor PCC for life-threatening bleeds (n=63) or emergency surgery (n=30)	Thrombo- embolism within 14 days (and effect on INR)	12% developed thrombo-emb. <14 days (median time 5 days). Risk increased by Heparin induced low platelets; major surgery <14 days; >6 risk factors for Thrombo-emb. For patients post warfarin reversal, INR corrected within 24hrs in 87%. INR "rebound" seen in 25% (mostly when no Vit K given).	Retrospecti ve observatio nal study	4-factor PCC associated with significant thrombo-embolic risk. However useful agent for warfarin reversal. Lack of concomitant Vit K may contribute to INR rebound
Subramamiam , Transfusion 2016; Australia	Retrospectiv e cohort study in 3 centres	2228 patients having endo for NVUGIB (2008- 2010)	30-day and 1- year mortality	30-day and 1-year mortality were 4.9% and 13.9%. Transfusion of ≥4 units associated with >10 times odds of rebleeding if Hb>9g/dL. Use of ≥5 units FFP associated with increased 30-day mortality (p=0.008) and 1-year mortality (p=0.005) after adjustment for confounders	Retrospecti ve study	FFP administration associated with increased mortality; and red cell transfusion associated with further bleeding in a subset of patients
Fabricus, World J Surgery 2016; Denmark	Retrospectve analysis of Danish hospital admissions	5107 admitted patients with haemostatic endoscopic interventions for NVUGIB in Denmark 2011-13	Effect of transfusion policy on 30- day mortality; repeat endo; surgery (after correcting for confounders)	Red cell Tx associated with repeat endo, surgery, 30-day mortality. FFP use associated with risk for surgery, and 30-day mortality (OR 1.04; p<0.01). Platelet use associated with less need for repeat endo	Retrospecti ve analysis of national data	Red cell and FFP transfusion associated with adverse events
Karaca, Am J Emerg Med	Prospective cohort study	40 patients with GI bleeding on	Efficacy of warfarin	Mean INR at 2 and 6 hours was lower in PCC group (p<0.01 for both). 7 patients had	Cohort non-	After GI bleeding on warfarin, INR levels

2014; Turkey		warfarin with INR>2.1 who had PCC or FFP (n=20 each)	reversal using PCC or FFP	active bleeding at endo in FFP group vs none in PCC group (p<0.01). ED stay lower in PCC group (p<0.01)	randomise d comparison	appeared to be reversed more quickly with PCC than FFP.
Stollings, J Crit Care 2018; USA	Retrospectiv e single centre observationa I study of TXA	36 GI bleeding (UGIB in 67%) patients admitted to ICU and given TXA (2012-2016)	Blood products transfusion and adverse events	Rebleeding in 14%, surgery or embolization in 16%. Prior heparin had been given to 7 patients, warfarin to 2 and DOAC to 1. No PCC was given. More red cell transfusions were given pre- than post TXA, but no difference seen between pre- and post- FFP or platelet transfusions. DVT in 6%, MI and acute renal failure in 3% each. 28-day mortality in 53%	Retrospecti ve single centre observatio nal study design	Lower red cell transfusion post TXA administration and relatively low risk of complications.
Tavakoli, UEGJ 2017, Iran	Double blind, single centre RCT of TXA	410 patients with UGIB randomised to IV TXA (n=138), topical TXA via ng (133) or placebo	Urgent endo, mortality rebleeding, blood transfusion, endo or surgical intervention & health status	Time to endo shorter in placebo group (p<0.001); need for urgent endo higher in placebo group (p<0,001). Other endpoints similar. No thromboembolic events seen within 1 week	Single centre; follow-up not robust and not complete in 61 patients	TXA appears promising for UGIB, especially to reduce need for urgent endoscopy

Saidi, Lioab 2017; Iran	Prospective double-blind placebo controlled single centre trial of TXA	131 patients with UGIB – ng TXA	Red cell transfusion	Reduced red cell Tx (p<0.001) and reduces rebleeding (6% vs 18.8%; p=0.033) in TXA group. Also, lower emergency endoscopy in TXA group (9% vs 22%; p=0.04). Similar mortality in both group	Single centre; Sample size calculation had limitations	Intragastric TXA safe, simple and well tolerated with reduction in transfusion requirements and rebleeding. Further data needed before this can be recommended.
Flores, Medwave 2015; Chile (Spanish with English abstract)	Combined meta-analysis of 5 systematic reviews including 8 RCTs using GRADE (identified by Epistemonik os database)	UGIB patients given TXA	Rebleeding; mortality and adverse events	*Article in Spanish with English abstract only*	Database search then results combined then assessed by GRADE. Cannot find English copy of full paper	TXA probably reduces rebleeding and mortality, without increasing thromboembolic adverse effects
Cochrane review: TXA for upper GI bleeding; 2014	Intervention review (Cochrane)	RCTs of patients with UGIB given TXA vs no intervention, placebo or other anti-ulcer drugs	All-cause mortality, bleeding and adverse events	8 RCTs included (control groups were placebo in 7 and no intervention in 1). Two also had control group assigned to anti-ulcer drugs. Mortality overall was lower in TXA group (RR0.60, 95%CI 0.42-0.87; p=0.007. This was not confirmed if missing data patients were included as Rx failures.	Analysed studies dated from 1973-2011	Suggests TXA had a beneficial effect, but high drop-out in the analysed studies limited accuracy

	No difference seen in thrombo-embolic	
	events	

Study Ref.	Study type	Patient group	Key outcomes	Key results	Limitation	Conclusion
Kim SY, Hyun JJ, Suh SJ, et al. Risk of Vascular Thrombotic Events Following	Retrospective cohort analysis	544 patients with PUB, 72 patients were taking antithrombotics	Association between discontinuation of antithrombotic	Thrombotic events developed more often in the discontinuation	Retrospective analysis Quite a limited	Discontinuation of antithrombotics after peptic
Discontinuation of Antithrombotics After Peptic Ulcer Bleeding. <i>J</i> Clin Gastroenterol.		and followed up for >2 months. Forty patients discontinued	drugs after ulcer bleeding and thrombotic events (ischemic heart	group than in the continuation group [7/32 (21.9%) vs. 1/40 (2.5%),	number of patients exposed	ulcer bleeding increases the risk of cardiovascular
2016;50(4):e40-e44. doi:10.1097/MCG.00000 0000000354		antithrombotics after ulcer bleeding (discontinuation group) and 32 patients continued antithrombotics with or without transient interruption (continuation group).	disease or stroke)	P=0.019]. Hazard ratio for thrombotic event when antithrombotics were continuously discontinued was 10.9 (95% confidence interval, 1.3-89.7). There were no significant differences in recurrent bleeding events between the 2 groups.	Unbalanced groups	events

Study Ref.	Study type	Patient group	Key outcomes	Key results	Limitation	Conclusion
Wang et al. Long-term Prognosis in Patients Continuing Taking Antithrombotics After Peptic Ulcer Bleeding World J Gastroenterol 23 (4), 723-729. 2017. PMID 28216980.	Retrospective cohort analysis	A total of 167 patients with PUB divided into either a continuing group to continue taking antithrombotic drugs (aspirin 85.7%) after ulcer bleeding or a discontinuing group to discontinue antithrombotic drugs (85.5% aspirin).	The primary outcome was recurrent bleeding. Secondary outcome were death or acute cardiovascular disease occurrence.	analysis showed that the hazard ratio (HR) for recurrent bleeding was 2.98 (95%CI: 1.06-8.35, $P = 0.015$) in the continuing group, while HR for death or acute cardiovascular disease in the discontinuing group was 5.21 (95%CI: 1.03-26.27, $P = 0.028$).	Small study, Retrospective analysis Unbalanced groups	Continuing antiplatelet drugs in patienst with PUB increases the risk of recurrent bleeding events, while discontinuing antithrombotics would increase the risk of death and developing cardiovascular disease.
K Siau et al. Stopping Antithrombotic Therapy After Acute Upper Gastrointestinal Bleeding Is Associated	Retrospective cohort study.	118 patients who underwent gastroscopy for UGIB while on antithrombotic	Cause-specific mortality, thrombotic events, rebleeding and	Stopping antithrombotic therapy at the time of discharge was associated with	Small study, Retrospective analysis Unbalanced	Discontinuation of antithrombotic therapy is associated with increased thrombotic events and reduced survival.

With Reduced Survival Postgrad Med J 94 (1109), 137-142. Mar 2018. PMID 29101296.		therapy , with median follow- up of 259 days.	serious adverse events	increased mortality (HR 3.32; 95% CI 1.07 - 10.31, P=0.027), thrombotic events (HR 5.77; 95% CI 1.26 to 26.35, P=0.010) and overall adverse events (HR 2.98; 95% CI 1.32 to 6.74, P=0.006). No significant differences in postdischarge bleeding rates between groups (HR 3.43, 0.36 to 33.04, P=0.255).	groups	
Study Ref.	Study type	Patient group	Key outcomes	Key results	Limitation	Conclusion
Sung JJ, et al. Asia-Pacific working group consensus on non-variceal upper gastrointestinal bleeding: an update 2018 Gut 2018. PMID 29691276	Clinical Guideline	NA Patients with NVUGIB.	 PPI effect Antiplatelet and anticoagulan t effects rebleeding need for surgery mortality need for 	Statement 12: Among patients with high cardiothrombotic risk receiving antiplatelet agents, these agents should be resumed as soon as haemostasis can be established. Statement 13: In patients receiving dual antiplatelet agents, at	NA	Among patients with high cardiothrombotic risk receiving antiplatelet agents, these agents should be resumed as soon as haemostasis can be established. In patients receiving dual antiplatelet agents, at

			intervention	least one antiplatelet agent should be resumed in cases of upper gastrointestinal bleeding		least one antiplatelet agent should be resumed in cases of upper gastrointestinal bleeding
Sostres C, Marcén B, Laredo V, et al. Risk of rebleeding, vascular events and death after gastrointestinal bleeding in anticoagulant and/or antiplatelet users. Aliment Pharmacol Ther. 2019;50(8):919– 929. doi:10.1111/apt.15441	Retrospective cohort analysis	871 patients with GIB (25% PUB) taking antithombotic drugs 52.5% used an antiplatelet ;93.1% interrupted treatment after GIB. and 80.5% restarted therapy. Median follow- up was 24.9 months (IQR: 7.0-38.0).	Rebleeding, vascular events and death.	Resumption of therapy was associated with a higher risk of rebleeding (HR 2.18; 95% CI: 1.35-3.51) but a lower risk of an ischaemic event (HR 0.62; 95% CI: 0.43-0.90) or death (HR 0.60; 0.45-0.80) in a multivariable COX hazards proportional models	Retrospective analysis Mixed patients for all types of bleeding	Resumption of anticoagulant or antiplatelet therapy after a gastrointestinal bleeding event was associated with a lower risk of vascular events and death and a higher rebleeding risk. The benefits of early reinstitution of anticoagulant/antiplatelet therapy outweigh the gastrointestinal-related risks.

			1	1	1	1
Study Ref.	Study type	Patient group	Key outcomes	Key results	Limitation	Conclusion

	Study type	Patient group	Key outcomes	Key results	Limitation	Conclusion
Hemara MH , et al. Endoscopic injection of autologous blood versus diluted epinephrine for control of actively bleeding gastroduodenal ulcers: a randomized-controlled study. Eur J Gastroenterol Hepatol. 2014;26:1267-1272	RCT, 100 patients	Injection therapy with 5- 20mL autologous blood (n=50) Vs. Epinephrine injection (n=50)	 primary hemostasis 30-day rebleeding complications 	no significant difference between the two groups for: - primary hemostasis (100% vs. 100%) - 10 day rebleeding (8% vs. 10%) - cardiovascular complications (0% vs. 4%)	Small sample size Unblinding	Autologous blood is effective as epinephrine for primary hemostasis and does not significantly reduce the rebleeding rate
Endoscopic treatment for high-risk bleeding peptic ulcers: A randomized, controlled trial of epinephrine alone with epinephrine	RCT, 108 patients	Epinephrine injection alone (n=50) Vs. Epinephrine injection plus 8mL Fresh Frozen Plasma	primary hemostasis30-day rebleeding	no significant difference between the two groups for: - primary hemostasis (94% vs. 98%) - rebleeding (14% vs. 8%)	Single vs. dual therapy Small sample size Unblinding	Injection of epinephrine plus FFP does not provide any benefit over epinephrine injection alone

plus fresh frozen plasma. J Res Med Sci. 2016;21:135. Nunoue T et al.	RCT,	(n=50) Soft coagulation	- primary	- surgery (6% vs. 4%9 - mortality (10% vs. 6%) primary hemostasis	Small sample size	Soft coagulation using
A Randomized Trial of Monopolar Soft-mode Coagulation Versus Heater Probe Thermocoagulation for Peptic Ulcer Bleeding. J Clin Gastroenterol. 2015;49:472-476.	111 patients	(n=56) Vs. Heater probe (n=55)	hemostasis - 30-day rebleeding - complications	significantly higher in soft coagulation group (96% vs 67%, p<0.0001) - 30-day rebleeding (2% vs. 13%) - perforation (4% vs. 0%)	Unblinding	monopolar hemostatic forceps is more effective than heater probe for achieving hemostasis
Wang HM, et al. Improvement of Short- Term Outcomes for High-Risk Bleeding	RCT, 116 patients	injection with distilled water plus APC (n=58) Vs. injection with	primary hemostasis30-day rebleeding30-day mortality	Rebleeding rate significantly lower in APC group (3.6% vs. 16%, p=0.029)	Low-dose regiment of proton pump inhibitor (PPI), rather than high- dose PPI regiments was	Endoscopic therapy with APC following distilled water injection is more effective than distilled water injection alone for preventing rebleeding of peptic

Peptic Ulcers With Addition of Argon Plasma Coagulation Following Endoscopic		distilled water only (n=58)	hospital stayunits of blood transfused	no significant difference between the two groups for:	used after endoscopy	ulcer
Injection Therapy: A Randomized Controlled Trial.				primary hemostasis (97% vs. 95%)30-day mortality (3.4%)		
Medicine (Baltimore). 2015; 94: e1343.				vs. 3.4%) - hospital stay (7.6 vs. 7.1) - units of blood transfused (4.4 vs 4.3)		
					Small sample size	
Kim JW et al. Comparison of hemostatic forceps with soft coagulation versus argon plasma coagulation for bleeding peptic ulcera randomized trial. Endoscopy. 2015; 47:680-7.	RCT, 151 patients	Epinephrine injection plus APC (n=75) Vs. epinephrine injection plus hemostatic forceps with soft coagulation (HFSC) (n=76)	 30 day rebleeding primary hemostasis 7-day rebleeding need for surgery or embolization 30 day death hospital stay perforation 	no significant difference between the two groups for: - 30 day rebleeding (6.7% vs. 9.2%) - primary hemostasis (96.0% vs. 96.1%) - 7 day rebleeding (4.0% vs. 6.6%) - need for surgery/ embolization (0% vs. 0%)	Generalizability of HFSC procedure (single centre, expert endoscopists)	The efficacy and safety of HFSc is not inferior to APC
				- 30 day mortality: 2.7%		

		vs. 2.6%	
		- hospital stay (9.7 vs. 7.8 days)	
		- perforation (0% vs. 0%)	

Authors	Study	Patient	(n)	Interventio	endpoint	Outcomes	Conclusions
	type	group		n			
Jensen AmJ Gastro 2017	RCT	Group Ib Group Ia+IIa+II b	388 Ib 163 Ia+IIa+ IIb 225	PPI or placebo	rebleeding	PPI reduced rebleding in Ia+IIa+IIb but not Ib (5.4% vs 4.9%, n.s) Ib had lower risk of rebleeding (4.9%) compared to Ia(22.5%), IIb(17.6%) or IIa(11.3%)	PPI not recommended after successful treatment in Ib
Jensen GIE 2016	Prospec tive cohort	Patients with severe bleeding	High risk (Ia, IIa, IIb) 87 Med risk (Ib, IIc) 52 Low risk (III) 24	Doppler before and after Rx Compariso n High vs med and la vs lb	Doppler before Doppler after Rx Rebleeding 30d	High vs Med risk: - DEP+ before 87.4% vs 42.3% - DEP+ after 27,4% vs 13,6% la vs lb - Dep+ before 100% vs 46.7% - DEP+after 35,7% vs 0% Rebleeding 28,6% vs 0%	DEP improves risk stratification Ia has higher DEP+ and rebleeding rates than Ib
Camus APT 2016	Prospec tive observa		1264	Ulcer size	rebleeding	Rebleeding: 17.7% increasing with size	Ulcer size independent risk factor for adverse outcome

	tional					
Lolle Scand J 2016	Prospec tive Observa tional	Duoden al ulcer Gastric ulcer	20059	Death Reintervention	Bleeding from DU vs GU: - all-cause mortality 90d (OR) 1.47 (1.30-1.67); p < 0.001 - all-cause mortality 30d OR 1.60 (1.43-1.77); p < 0.001 - re-intervention: adjusted OR 1.86 (1.68-2.06); p < 0.001	Duodenal location has worse all cause mortality and reintervention rate

Authors	Study type	Patient group	(n)	Intervention	endpoint	Outcomes	Conclusions
Jensen AmJ Gastro 2017	RCT Retrospective	Group Ib Group Ia+IIa+IIb	388 b 163 a+ la+ lb 225	PPI or placebo	rebleeding Rebleeding	PPI reduced rebleding in Ia+IIa+IIb but not Ib (5.4% vs 4.9%, n.s) Ib had lower risk of rebleeding (4.9%) compared to Ia(22.5%), IIb(17.6%) or IIa(11.3%) Rebleeding endo vs PPI:	PPI not recommended after successful treatment in lb
KJG 2015 (Korean translated with Google)	icuspecure		llb 126	therapy 84 PPI 42	Mortality All cause mortality	- 7.1% vs. 9.5%; p=0.641 Mortality endo vs ppi: - 1.2%vs10%;p=0.018 All-cause mortality endo vsPPI - 3.7% vs. 20.0%; p=0.005	associated with a significant reduction in bleeding related mortality and all cause mortality compared with medical therapy alone
Jensen Gastro 2017	RCT	Multiple NVUGIB Subgroup: SRH	High risk (Ia, IIa, IIb) 53 Med risk	Standard Doppler guided intervention.	Rebleeding 30d	Standard vs DEP guided:	Doppler shows a significant overall 30d rebleeding decrease but its

		(Ib, IIc) 23	Repeat intervention if DEP+ after intervention		- Ia 18.8% vs 0% n.s - IIc 14.3% vs 0% n.s - Total 26.3% v11.1%,p=0.0214	not significant in a case by case basis. Limitation: n is very low
Kantowski Scan J Gastro 2018	Prospective	Ia 6 Ib 41 IIa 13	Standard 25 Doppler guided intervention 35	Rebleeding Surgery Mortality	Rebleeding standard vs DEP:	Use of DEP associated with lower rebleeding, surgery and mortality Limitation: most patients lb that already has a lw rebleeding rate after Rx Results not grouped by SRH

Authors	Study type	Patient group	(n)	Intervention	endpoint	Outcomes	Conclusions
Nunoue J Clin Gastro 2015	Prospective Randomized	PUB randomized to Group Soft coagulation with forceps Group heater probe	Group S 56 Group H 55	Soft coagulation with forceps Heater probe	Primary hemostasis Rebleeding Complications	Group S vs H - Primary hemostasis 96% vs 67%, p<0.0001 - Rebleeding 0 vs 12% - Complications 0 vs 2	
Kim Endoscopy 2015	RCT	PUB randomized to Group APC: Injection + APC Group HFSC: Injection + HFSC	Total 151 Group APC: 75 Group HFSC: 76	Injection + APC Injection + HFSC	Hemostasis Rebleeding 30d Adv events Mortality	APC vs HFSC: - Hemostasis 96% vs 96%, n.s. - Rebleeding 6.7% vs 9.2%, n.s - AE 1.3% vs. 2.6%, n.s - Mortality 2.7% vs. 2.6%	Coagulation forceps not inferior to APC
Toka GIE 2019	Prospective Randomized	MHFSC Hemoclip	MHFSC 56 Hemoclip 56	Injection + MHFSC Injection + hemoclip	Hemostasis Rebleeding 7d Time to hemostasis	MHFSC vs Hemoclip: - Hemostasis 98,2 vs 80,4, p=0.004 - Rebleeding 3.6% vs 17.7%, p=0.04	MHFSC is more effective achieving initial hemostasis

		Admission	- Time 302 ± 87.8	provides a
		AE	vs 568 ± 140.4 seconds	shorter procedure
			- Admission 3.50 ±	time and a
			1.03 vs 4.37 ±	lower
			1.86 days	rebleeding
			- AE none	rate compared
				with
				Hemoclips

Study Ref.	Study type	Patient group	Key outcomes	Key results	Limitation	Conclusion
1 .Baracat et Al Surg Endosc 2016:	Meta Analysis of RCTs: 28 trials,2988 patients	Adult patients, Peptic Ulcer Bleeding: High risk Endoscopic stigmata: (Forrest 1a/b:II a/b) Hemoclip,Injection,Thermal Methods monotherapy or combination:	Initial haemostasis, rebleeding, surgery, death	Clip v Inj: Rebleeding:(RD-0.13,95% CI-0.190.08) NNT Surgery: (RD-0.05 95% CI-0.090.01)NNT 20 Clip /INJ v INJ: Rebleeding:(RD-0.10 95% CI-0.0180.03) NNT 10 Surgery(RD-0.11 95% CI-0.180.04) NNT 9	Low number of studies some comparisons Heterogeneity of injectates	No significant differences in initial haemostasis between methods,or mono v dual therapy Superior rebleeding rate and need for surgery for clip compared to injection, No benefit of combination clip/injection compared to clip alone
		1–221 © 2021. European Society of Gastrointestin.		Thermal/INJ v Thermal Rebleeding: NNT of 9 (RD -0.11,		Dual therapy (thermal or clip)favoured over monotherapy if 0

			0.02) Thermal/INJ v INJ NNT of 12 (RD -0.08, 95 % CI -0.14 to -0.02) Rebleeding:		injection used as one modality in reducing rebleeding rate/surgery,but only rebleeding rate if thermal monotherapy compared to combination thermal /Injection
			Clip v Clip /INJ:NS difference all comparisons		No difference in mortality between modalities
			Thermal mono v endoclip Mono :NS all comparisons		
2. Shi et al. BMC Gastroenterology (2017) 17:55	Seventeen eligible studies,1939 patients,were included in the network metaanalysis.	Adult patients, Peptic Ulcer Bleeding: High risk Endoscopic stigmata: (Forrest 1a/b: II a)	The addition of mechanical therapy (OR 0.19, 95% Crl 0.07–0.52 and OR 0.10, 95% Crl 0.01–	Small study sizes Blinding not accurately reported in all	Confirms that combination therapy is superior in reducing rebleeding rate after peptic ulcer

Injection of Epinephrine monotherapy compared to combination Epinephrine with either Mechanical or Thermal methods of heamostasis	respectively) after epinephrine injection significantly reduced the probability of rebleeding and surgery. Similarly, patients who comp Epine Hetrogeneity of number of gastric v duodenal ulcer bleeds in component favou studies comp Epine Mono alone studies meno alone meno alone meno alone component surgery. studies comp	ugh trend to Epi plus anical od ared to Epi nermal this
---	---	--

	provide a	
	significant	
	reduction in	
	rebleeding (OR	
	0.62, 95% CrI	
	0.19–2.22) and	
	surgery (OR	
	0.21, 95% Crl	
	0.03-1.73)	
	compared to	
	epinephrine plus	
	thermal therapy.	
	, ,	

Study Ref.	Study type	Patient group	Key outcomes	Key results	Limitation	Conclusion
1.) Brandler J, Buttar	Case series with	67 patients with a	Effect of OTSC	Technical success	Low patient	OTSC is
N, Baruah A et al.	pre-test/post-	"high-risk	on	100%	number;	effective in
Efficacy of Over-the-Scope Clips in Management of High-Risk Gastrointestinal Bleeding. Clin Gastroenterol Hepatol 2018; 16(5):690-696	test outcomes (IV)	gastrointestinal bleeding" treated with OTSC; HR-AO-lesions (HR-AO= "high risk of adverse outcome") 60 patients with a NVUGIB, 49 patients with an ulcer bleeding, 11 patients with a Forrest-la-bleeding, primary-OTSC in 49 patients, 60% of patients with antiplatelet therapy or anticoagulant therapy	rebleeding rate, need for reintervention within 30 days Identifying risk factors associated with OTSC failure	"True OTSC success": no bleeding related to OTSC requiring re-intervention in 52 patients (81,3%) OTSC success: no bleeding within 30 days in 46 patients (71,8%) Complications: None	Case series with pre-test/post-test outcomes; Data from a highly specified centre	primary therapy of HR-AO-lesions
		HR-AO-lesions concerning NVUGIB: visible vessel >2mm, localization in high risk vascular		Risk factors for rebleeding: History of CAD, history of abdominal aortic aneurysm repair,		

		territory (gastroduodenal, left gastric), penetrating, excavated or fibrotic ulcer Forrest la-IIb		length of hospital stay (?)		
2.) Goelder S, Messmann H, Neuhaus L et al. Over-the-scope clip in peptic ulcer bleeding: clinical success in primary and secondary treatment and factors associated with treatment failure. Endoscopy International Open 2019; 07:E846-E854	Case series with pre-test/post-test outcomes (IV)	100 patients with a peptic ulcer bleeding treated with OTSC 12/6t-OTSC primary-OTSC in 66 patients, secondary-OTSC in 34 patients	Effect of OTSC on rebleeding rate, need for reintervention Successful hemostasis: no rebleeding immediately after OTSC placement	Primary-OTSC: Successful hemostasis in 90,9%, recurrent bleeding in 16,7% Secondary-OTSC: Successful hemostasis in 94,1%, recurrent bleeding in 21,9%	Low patient number; Case series with pre-test/post-test outcomes;	OTSC is effective in primary therapy and in recurrent ulcer bleeding
		in 75% duodenal ulcers 51 patients with Forrest-lableedings, 23 patients with Forrest-lb-	Recurrent bleeding: retreatment of the target lesion after initial successful endoscopic treatment required	Factors associated with OTSC failure: localization: posterior duodenal wall, OR 8,11 (1,89 – 56,94), no		

bleedings	significant	
	influence of	
	anticoagulants	
44 patients using		
anticoagulants		
	Complications:	
Median RS of 7	not mentioned	

Study Ref.	Study type	Patient group	Key outcomes	Key results	Limitation	Conclusion
3.) Kobara H, Hirohito M, Tsutomu M et al. Over-the-scope-clips: A review of 1517 cases over 9 years. DOI: 10.1111/jgh.14402	Review of case series with pre- test/post-test outcomes (IV)	1517 OTSC cases in 30 articles between 2010 and 2018 559 OTSC applications in order	Clinical success rate CSR in refractory bleeding	CSR in refractory bleeding: 473/559 (84,6%) Complications:	Analysis of case series No discrimination between upper and lower GI-	OTSC is effective in therapy of GI- bleeding
		of hemorrhage: Mentioned case series after 2014: - Richter- Schrag HJ et		Severe complications in 0,59% (9/1517 cases): stenosis, (micro-)perforation,	No discrimination between primary-OTSC and	

		al., 2016, s. Study Ref. 4.) - Wedi E et al., 2016, s. Study Ref. 5.)			secondary-OTSC	
4.) Richter-Schrag HJ, Thimme R, Glatz T et al. First-line endoscopic treatment with over-the-scope clips significantly improves the primary failure and rebleeding rates in high-risk gastrointestinal bleeding: A single-center experience with 100 cases. World J Gastroenterol 2016. 22(41): 9162-9171	Historical control study (III-3)	Freiburg group: 93 patients, 100 OTSC applications in different severe acute UGIB and LGIB lesions, 63 patients with a NVUGIB Rockall-Score <7 in 33 patients, Rockall- Score ≥7 in 30 patients Primary-OTSC in 39 patients, secondary- OTSC in 33 patients 56 patients with active bleeding	Outcome concerning primary failure, rebleeding, rebleeding compared to the "original" Rockall group Primary failure: continued rebleeding immediately after OTSC placement Rebleeding: In-hospital- rebleeding after primary hemostasis with	Primary failure, overall: Primary-OTSC: 4,9%, secondary-OTSC: 23,1% (p = 0,008) Rebleeding, overall: Primary-OTSC: 8,2%, secondary-OTSC: 28,2% (p = 0,008) Rebleeding events with a Rockall-Score ≥7: "original" Rockall group: 46,8%	Historical control study with a control group from 1996	OTSC is effective in therapy of NVUGIB, in this study especially as first line treatment of high-risk- NVUGIB OTSC treatment is more effective in preventing rebleeding than standard therapy

5.) Wedi E,	Case series with	Median RS of 7 29 patients using anticoagulants Control group: "original" Rockall group 84 patients treated	OTSC Technical success: Successful placement of the OTSC on the target lesion CSR in upper GI	Freiburg group: 18,6% (p = 0,0003) Factors associated with rebleeding: Secondary-OTSC (p = 0,008), no significant influence of anticoagulants CSR in upper GI	Low patient	OTSC is
Hochberger J, Gonzalez S et al. One hundred and one over-the-scope-clip applications for severe gastrointestinal bleeding, leaks and fistula. World J Gastroenterol 2016. 22(5): 1844-1853	pre-test/post-test outcomes (IV)	with 101 OTSC, 41 patients with severe NVUGIB (Forrest Ia – IIb, Hb <7 g/dl) 12/6t-OTSC Primary-OTSC in 28 patients, secondary- OTSC in 13 patients 12 patients with a Forrest-Ia-bleeding,	bleeding	bleeding: 35/41 (85,36%)	number; Case series with pre-test/post-test outcomes; definition of severe NVUGIB	effective in primary therapy

	Forrest-Ib-bleeding				
--	---------------------	--	--	--	--

Study Ref.	Study type	Patient group	Key outcomes	Key results	Limitation	Conclusion
6.) Asokkumar R, Ngu JH, Soetikno R et al. Use of over-the- scope-clip (OTSC) improves outcomes of high-risk adverse outcome (HR-AO) non-variceal upper gastrointestinal bleeding (NVUGIB). Endoscopy	Historical control study, prospective (III-3)	18 patients with 19 bleeding lesions treated with OTSC Primary-OTSC in 10 patients, secondary-OTSC in 9 patients	Technical success Complete hemostasis: complete cessation of bleeding after OTSC placement	Initial technical failure in 3 cases (!) Incomplete hemostasis after OTSC deployment in 6 patients (!), after applying additional	Very low patient number; Case series with pre-test/post- test outcomes; control group from 1996;	OTSC is effective in primary therapy of HR-AO-lesions, but it can be tricky
International Open 2018; 06:E789-E796.		10 patients with an active bleeding 10 patients using anticoagulants	Clinical success: no rebleeding within 30 days after placement of OTSC	techniques complete hemostasis was achieved Clinical success:		
		Median RS 6,7 ± 1,3 n = 6: high-risk n = 12: intermediate-risk		Comparison to the "original" Rockall group: Rebleeding rate significantly lower		

n = 1: low-risk	in the high-risk-
	group (0% vs.
	53%) and the
HR-AO-lesions	intermediate-risk-
concerning	group (0% vs.
NVUGIB:	24%)
Bleeding due to a large-caliber (>2 mm) artery,	Comparison to
localization within	the second
the major arterial	control group:
territories (left	intermediate-to-
gastric,	high-risk:
gastroduodenal	Rebleeding rate
artery), bleeding	0% vs. 21%, low-
from deeply	risk: n = 1: no
penetrating,	statistical
excavated or	statement is to be
fibrotic ulcers with	made
high-risk stigmata	
with risk of	
perforation when	
performing	
thermal therapy,	
bleeding when	
endoscopic	
therapy using	
mechanical	
approach or	
radiological	
approach was	

,	
	unsuccessful, 20 –
	40%
	complications,
	using standard
	therapy, Barkun
	AN et al.,
	Gastrointest
	Endosc 2009; 69:
	786-799
	Control group:
	Control group.
	"original" Rockall
	group:
	Law risk r. 1200
	Low-risk, n = 1206,
	RS ≤3,
	intermediate-risk,
	n = 1560, RS 4 – 7,
	high-risk, n = 190,
	RS ≥ 8
	Second historical
	control group:
	n - 52 standard
	n = 52, standard
	therapy, low-risk,
	n = 23, RS ≤ 3,
	intermediate-to-
	high risk, n = 29,
	RS ≥ 4, Stanley AJ

		et al. BMJ 2017; 356:i6432				
7.) Schmidt A, Caca K, Goelder S et al. Overthe-Scope Clips Are More Effective Than Standard Endoscopic Therapy for Patients With Recurrent Bleeding of Peptic Ulcers. Gastroenterology 2018; 155:674-686.	RCT (II)	66 patients with recurrent ulcer bleeding after an initial successful hemostasis OTSC group: n = 33, active bleeding: n = 23, patients using anticoagulants: n = 15, RS ≥7: n = 19	Further bleeding: a composite endpoint of a persistent bleeding despite endoscopic therapy according to protocol or recurrent bleeding within 7 days after successful hemostasis	Persistent bleeding: OTSC group: 2 patients, 6,0%, standard therapy group: 14 patients, 42,4%, p = 0,001 Recurrent bleeding within 7 days:	None	OTSC treatment as standard therapy in recurrent ulcer bleeding
		Standard therapy group: n = 33 (TTSC: n = 31), cross over to OTSC is possible, active bleeding: n = 22, patients using anticoagulants: n = 12, RS ≥ 7: n = 19	Secondary endpoints: mortality, necessity of surgical or angiographic rescue therapy,	OTSC group: 3 patients, 9,1%, standard therapy group: 5 patients, 16,1%, p = 0,468 Further bleeding as a composite endpoint: OTSC group: 5 patients, 15,2%, standard therapy		

				group: 19 patients, 57,6%, p = 0,001, Cl 21,6 – 63,2 No significant differences in secondary endpoints		
8.) Wedi E, Richter-Schrag HJ, Fischer A et al. Multicenter evaluation of first-line endoscopic treatment with the OTSC in acute non-variceal upper gastrointestinal bleeding and comparison with the Rockall cohort: the FLETRock study. Surg Endosc 2017; 32(1): 307-314.	Historical control study (III-3)	FLET cohort: 118 patients Primary-OTSC: n = 121 Median RS of 7 65,3% were under antiplatelet therapy or anticoagulant therapy Low-risk: RS ≤3, n = 3,	Primary clinical success: hemostasis by OTSC alone Secondary clinical success: OTSC in combination with adjunctive measures Mortality in comparison with the "original" Rockall group Rebleeding rates in comparison	No technical failure Primary clinical success in 90,8% Secondary clinical success in 1,7% Clinical failure in 7,5% Presence of antiplatelet or anticoagulant therapy with no influence of	Low patient number; Case series with pre-test/post-test outcomes; control group from 1996;	Forrest-Ia- bleedings at higher risk of rebleeding Especially in the high-risk-group with RS ≥8 primary-OTSC seems to be effective

T T			
moderate-ri	isk: RS with the	outcome	
4 – 7, n = 60), "original" Rockall		
	group		
high-risk: RS	S ≥8, n	Forrest-la-	
= 55			
		bleedings at	
		higher risk of	
		rebleeding (11	
Control grou	up:	patients from 31	
"original" Ro	ockall	patients)	
	OCKAII	patients,	
group			
		RS ≥8, n = 55:	
		La base de la	
		In-hospital-	
		mortality overall:	
		29,1% (16 of 55	
		patients),	
		bleeding-	
		associated	
		mortality: 10,9%	
		(6 of 55 Patients,	
		CI 4,1 – 22,2),	
		predicted: 27,9%,	
		p = 0,011	
		Rebleeding:	
		21,4% (12 of 56	
		clips, Cl 11,6 –	
		34,4), predicted:	
		53,2%, p < 0,001	

9.) Manta R, Galloro	Case series with	286 patients in	Technical success	Technical success	Low patient	Technical failure in
G, Mangiafico S et al.	pre-test/post-	eleven tertiary		in 97,1% (208	number;	six patients with
First-line endoscopic	test outcomes	endoscopic		patients from	Case series with	ulcers in the
treatment with over-	(IV)	referral centres	Primary	214)	pre-test/post-	fundus or
the-scope clips in	(10)		hemostasis:		test outcomes	posterior wall
patients with either			defined as		test outcomes	duodenal bulb
upper or lower		112 patients with	bleeding stopping	Primary		
gastrointestinal		antithrombotic	without	hemostasis in		
bleeding: a		therapy (39,2%)	additional	97,1% (202		Management of
multicenter study.			endoscopic	patients from		failure patients:
Endoscopy			treatments	208)		To sharing! failuse
International Open		214 patients with				Technical failure,
2018; 06:E1317-E-		NVUGIB				primary hemostasis failure,
1321.			Early rebleeding	Early rebleeding		1
			rate within 24	rate 4,4% (9		early rebleeding
		Primary-OTSC	hours	patients from		
		,		202)		
		190 patients with	Delayed			
		active bleeding, 58	rebleeding rate	Delayed		
		patients with a	within 30 days	rebleeding rate		
		Forrest-la-		0%		
		bleeding, 73				
		patients with a	Management			
		Forrest-Ib-bleeding	with non-			
			endoscopic			
			procedures			
			following			
			endoscopic			
			failure			

10.) Lamberts R,	Case series with	75 patients				
Halm U, Koch A et al.	pre-test/post-					
Use of over-the-	test outcomes					
scope-clips (OTSC)	(IV)	68 patients with				
for hemostasis in	(1V)	NVUGIB				
gastrointestinal						
bleeding in patients						
under antithrombotic		Primary-OTSC in				
therapy. Endoscopy		58,7%, Secondary-				
International Open		OTSC in 41,3%				
2017; 05:E324-E330.		013011111,370				
		69 patients with				
		antiplatelet				
		therapy, inhibitors				
		of plasmatic				
		coagulation or				
		both				
		ווסנוו				
		Active bleeding in				
		51 patients				
		of patients				
11.) Chandrasekar	Meta-analysis of	n = 851, n = 687	Primary technical	Definitive	Only 8 studies	The advantage
VT, Sharma P, Desai	21 studies	(80,7%) with	success:	hemostasis rate	with n >100,	here: investigation
M et al. Efficacy and		NVUGIB	successful	overall 87,8%	only 1 RCT	of the other trials I
safety of over-the-			deployment of	(95%CI 83,7% -		did not mention
scope clips for			the clip over the	92%), definitive		before
gastrointestinal			lesion	hemostasis rate	Data from	
bleeding: a				NVUGIB 86,6%	Augsburg (n =	
systematic review				(95%CI 81,9% -	100) not	Conclusion:
and metaanalysis.			Primary clinical	91,3%), median		primary OTSC:

Endoscopy 2019;	success: rate of	follow-up 56 days	included	large ulcers ≥ 2
51:941-949	hemostasis			cm, Forrest class 1
	achieved after			ulcers, for
	technical success	Primary technical		patients, who are
		success rate		on antithrombotic
		97,8% (95%CI		therapy
	Rebleeding rate:	96,7% - 98,9%)		
	rate of patients			
	with rebleeding			
	after primary	Rebleeding rate		
	clinical success	10,3% (95%CI		
		6,5% - 14,1%)		
	Definitive			
	hemostasis:	Primary-OTSC		
	successful	failure rate 9%		
	primary	(95%CI 5,2% -		
	hemostasis, no	12,8%)		
	rebleeding as primary outcome			
	primary outcome			
		Secondary-OTSC		
		failure rate 26%		
		(95%CI 16,1% -		
		36,0%)		
		Only 2 adverse		
		events in 851		
		reported (!)		
		reported (:)		

Study Ref.	Study type	Patient group	Key outcomes	Key results
Original article, pubmed	Retrospective Single center	High risk peptic bleeding ulcer	- Doppler technical success	- Doppler technical success: 34/35 patients - Rebleeding rate
Kantowski, M, Schoepfer AM, Settmacher U, Stallmach A, Schmidt C.	Comparative cohort study Patient were allocated in ED (Endoscopic Doppler) or ND (No	Patients of at least 18 years of age, with clinical signs of bleeding (hematemesis, hematochezia, oe melena), classified as Forrest I-IIa and a	Rebleeding rateSurgery rateMortality	ND group: 52% (13/25) ED group: 20% (7/35) p=0.01 - Surgery rate
2018 Scandinavian Journal of gastroenterology	Doppler) based on where they had the endoscopy. The endoscopic unit has one endoscopic suite	Rockall score of 5 or higher. Total of 60 patients		ND group: 24% (6/25) ED group: 3% (1/35) p=0.012
German study	with Doppler, the other one did not have the Doppler. There was no randomization or matching	35 ED group 25 ND group Two groups were comparable for ulcer size, localization,		- Mortality Significantly lower in the ED group compared to the ND group (1/35 vs. 6/25, p Value=0.017), while all-cause mortality not significantly different between the two groups (7/35 vs 8/25, p value =0.367)
	Endoscopies performed by only one experienced endoscopist The study period is not mentioned in the	Forrest classification,		

	article			
Study Ref.	Study type	Patient group	Key outcomes	Key results
2. RCT Jensen DM; Kovacs TOG, Ohning GV, Ghassemi K, Machicado GA, Dulai GS, Sedarat A, Jutabha R, Gornbein J Gastroenterology, 2017 USA study	Randomized controlled trial Single-blind study: Endoscopists were not blinded. Patients, families and managing teams were blinded 2 referral centers 8 doppler-trained endoscopists	All stigmata of recent haemorrhage (SRH) were included (Forrest classification), even low SRH Severe non-variceal upper Gl bleeding Clinically defined as presence of hematemesis, melena or hematochezia, signs or symptoms of hypovolemia (tachycardia, hypotension, othostatic change in pulse and blood pressure, dizziness or syncope) along with hemoglobine decrease from baseline of 2grams per decilitre or more or transfusion of 1 or more units	- Primary outcome: 30-day rebleeding rate - Secondary outcomes: complications, death, need for transfusions, surgery, or angiography	One difference at inclusion between 2 groups: more aspirin users in Doppler group (54.2% vs. 36.8%, p=0.034). Significant difference in rates of lesion rebleeding 26.3% control group vs. 11.1% Doppler group; p=0.0214. Odds ratio for rebleeding with Doppler monitoring was 0.35 (95%CI 0.143-0.8565). However, for each individual stigmata of recent haemorrhage (SRH), there were no significant difference in rebleed rates No significant difference in rebleed rates No significant difference in rebleed rates No Doppler group, p=0.048), and in angiograohy for rebleeding, length of hospitalization, intensive care unit stay, need for transfusions, or mortality
	sample size calculation (estimation of 75 patients per group)	of RBC 125 ulcers, 19 Dieulafoy's lesions, 4 Mallory Weiss		Strong association between residual blood flow after endoscopic hemostasis and rebleeding rates 8 of 9 (88.9%) patients in the Doppler

		Randomization n=76 control group n=72 doppler group All received Pantoloc infusion x 72 hours, then PPI po BIDx 30 d		group with residual blood flow that was not obliterated later rebled, compared with 0 of 8 (0%) in patients whose residual blood flow was obliterated with additional hemostasis (p=0.0004, Fisher exact test).
Study Ref.	Study type	Patient group	Key outcomes	Key results
3. cost-effectiveness study AN Barkun, V Adam, RC Wong Clin Gastroenterol Hepatol. 2019	USA cost-effectiveness study based on RCT A decision tree representing the choice between Doppler probe examination (DPE) and traditional endoscopic visual assessment (TEA) approaches for patients undergoing an index endoscopy for active nonvariceal upper gastrointestinal bleeding.	Probabilities were provided by 2 previous randomized trials. 1) Jensen et al. 2017 (see above) and 2) Kohler B, Maier M, Benz C, et al. Acute ulcer bleeding. A prospective randomized trial to compare Doppler and Forrest classifications in endoscopic diagnosis and therapy. Dig Dis Sci 1997;42:1370–1374.	- Cost of the 2 different approaches with or without Doppler The adopted time horizon was 30 days after the index Endoscopy Costs expressed in 2017 US dollars A third-party payer perspective adopted	DPE is more efficacious 92.6% of patients avoiding rebleeding vs 78.6% for TEA and less expensive (\$8502 vs \$9104 for TEA).

Deterministic :	and	
probabilistic se analyses		

Study Ref.	Study type	Patient group	Key outcomes	Key results	Limitation	Conclusion
1.) Brandler J, Buttar N, Baruah A et al.	Case series with pre-test/post-	67 patients with a "high-risk	Effect of OTSC on	Technical success 100%	Low patient number;	OTSC is effective in
Efficacy of Over-the-Scope Clips in Management of High-Risk Gastrointestinal Bleeding. Clin Gastroenterol Hepatol 2018; 16(5):690-696	test outcomes (IV)	gastrointestinal bleeding" treated with OTSC; HR-AO-lesions (HR-AO= "high risk of adverse outcome") 60 patients with a NVUGIB, 49 patients with an ulcer bleeding, 11 patients with a Forrest-la-bleeding, primary-OTSC in 49 patients, 60% of patients with antiplatelet therapy or anticoagulant therapy	rebleeding rate, need for reintervention within 30 days Identifying risk factors associated with OTSC failure	"True OTSC success": no bleeding related to OTSC requiring re-intervention in 52 patients (81,3%) OTSC success: no bleeding within 30 days in 46 patients (71,8%) Complications: None	Case series with pre-test/post-test outcomes; Data from a highly specified centre	primary therapy of HR-AO-lesions
		HR-AO-lesions concerning NVUGIB: visible vessel >2mm, localization in high risk vascular		Risk factors for rebleeding: History of CAD, history of abdominal aortic aneurysm repair,		

		territory (gastroduodenal, left gastric), penetrating, excavated or fibrotic ulcer Forrest la-IIb		length of hospital stay (?)		
2.) Goelder S, Messmann H, Neuhaus L et al. Over-the-scope clip in peptic ulcer bleeding: clinical success in primary and secondary treatment and	Case series with pre-test/post-test outcomes (IV)	100 patients with a peptic ulcer bleeding treated with OTSC	Effect of OTSC on rebleeding rate, need for reintervention	Primary-OTSC: Successful hemostasis in 90,9%, recurrent bleeding in 16,7% Secondary-OTSC:	Low patient number; Case series with pre-test/post-test outcomes;	OTSC is effective in primary therapy and in recurrent ulcer bleeding
factors associated with treatment failure. Endoscopy International Open 2019; 07:E846-E854		primary-OTSC in 66 patients, secondary-OTSC in 34 patients	hemostasis: no rebleeding immediately after OTSC placement	Successful hemostasis in 94,1%, recurrent bleeding in 21,9%		
		in 75% duodenal ulcers 51 patients with Forrest-lableedings, 23 patients with Forrest-lb-	bleeding: retreatment of the target lesion after initial successful endoscopic treatment required	Factors associated with OTSC failure: localization: posterior duodenal wall, OR 8,11 (1,89 – 56,94), no		

bleedings	significant	
	influence of	
	anticoagulants	
44 patients using		
anticoagulants		
	Complications:	
Median RS of 7	not mentioned	

Study Ref.	Study type	Patient group	Key outcomes	Key results	Limitation	Conclusion
3.) Kobara H, Hirohito M, Tsutomu M et al. Over-the-scope-clips: A review of 1517	Review of case series with pre- test/post-test outcomes	1517 OTSC cases in 30 articles between 2010 and 2018	Clinical success rate CSR in refractory bleeding	CSR in refractory bleeding: 473/559 (84,6%)	Analysis of case series	OTSC is effective in therapy of GI- bleeding
cases over 9 years. DOI: 10.1111/jgh.14402	(IV)	559 OTSC applications in order		Complications:	No discrimination between upper and lower GI-	

		of hemorrhage: Mentioned case series after 2014: - Richter-Schrag HJ et al., 2016, s. Study Ref. 4.) - Wedi E et al., 2016, s. Study Ref. 5.)		Severe complications in 0,59% (9/1517 cases): stenosis, (micro-)perforation,	No discrimination between primary-OTSC and secondary-OTSC	
4.) Richter-Schrag HJ, Thimme R, Glatz T et al. First-line endoscopic treatment with over-the-scope clips significantly improves the primary failure and rebleeding rates in high-risk gastrointestinal bleeding: A single-center experience with 100 cases. World J Gastroenterol 2016. 22(41): 9162-9171	Historical control study (III-3)	Freiburg group: 93 patients, 100 OTSC applications in different severe acute UGIB and LGIB lesions, 63 patients with a NVUGIB Rockall-Score <7 in 33 patients, Rockall- Score ≥7 in 30 patients Primary-OTSC in 39 patients, secondary-	Outcome concerning primary failure, rebleeding, rebleeding compared to the "original" Rockall group Primary failure: continued rebleeding immediately after OTSC placement	Primary failure, overall: Primary-OTSC: 4,9%, secondary-OTSC: 23,1% (p = 0,008) Rebleeding, overall: Primary-OTSC: 8,2%, secondary-OTSC: 28,2% (p = 0,008)	Historical control study with a control group from 1996	OTSC is effective in therapy of NVUGIB, in this study especially as first line treatment of high-risk- NVUGIB OTSC treatment is more effective in preventing rebleeding than standard

		OTSC in 33 patients 56 patients with active bleeding Median RS of 7	Rebleeding: In-hospital- rebleeding after primary hemostasis with OTSC	Rebleeding events with a Rockall-Score ≥7: "original" Rockall group: 46,8% Freiburg group: 18,6% (p = 0,0003)		therapy
		29 patients using anticoagulants Control group: "original" Rockall group	Technical success: Successful placement of the OTSC on the target lesion	Factors associated with rebleeding: Secondary-OTSC (p = 0,008), no significant influence of anticoagulants		
5.) Wedi E, Hochberger J, Gonzalez S et al. One hundred and one over-the-scope-clip applications for severe gastrointestinal bleeding, leaks and fistula. World J Gastroenterol 2016. 22(5): 1844-1853	Case series with pre-test/post-test outcomes (IV)	84 patients treated with 101 OTSC, 41 patients with severe NVUGIB (Forrest Ia – IIb, Hb <7 g/dl) 12/6t-OTSC Primary-OTSC in 28 patients, secondary-	CSR in upper GI bleeding	CSR in upper GI bleeding: 35/41 (85,36%)	Low patient number; Case series with pre-test/post-test outcomes; definition of severe NVUGIB	OTSC is effective in primary therapy

OTSC in 13 patients		
12 patients with a Forrest-la-bleeding, 3 patients with a Forrest-lb-bleeding		

Study Ref.	Study type	Patient group	Key outcomes	Key results	Limitation	Conclusion
6.) Asokkumar R, Ngu JH, Soetikno R et al. Use of over-the-scope-clip (OTSC) improves outcomes of high-risk adverse outcome (HR-AO) non-variceal upper gastrointestinal bleeding (NVUGIB). Endoscopy International Open 2018; 06:E789-E796.	Historical control study (III-3)	18 patients with 19 bleeding lesions treated with OTSC Primary-OTSC in 10 patients, secondary-OTSC in 9 patients 10 patients with an active bleeding 10 patients using anticoagulants	Complete hemostasis: complete cessation of bleeding after OTSC placement Clinical success: no rebleeding within 30 days after placement of OTSC	Initial technical failure in 3 cases (!) Incomplete hemostasis after OTSC deployment in 6 patients (!), after applying additional techniques complete hemostasis was achieved Clinical success: 100%	Very low patient number; Case series with pre-test/post- test outcomes; control group from 1996;	OTSC is effective in primary therapy of HR-AO-lesions, but it can be tricky

T	T		I	
	Median RS 6,7 ± 1,3 n = 6: high-risk n = 12: intermediate-risk n = 1: low-risk HR-AO-lesions concerning NVUGIB:	Comparison to the "original" Rockall group: Rebleeding rate significantly lower in the high-risk-group (0% vs. 53%) and the intermediate-risk-group (0% vs. 24%)		
	Bleeding due to a large-caliber (>2 mm) artery, localization within the major arterial territories (left gastric, gastroduodenal artery), bleeding from deeply penetrating, excavated or fibrotic ulcers with high-risk stigmata with risk of perforation when performing	Comparison to the second control group: intermediate-to-high-risk: Rebleeding rate 0% vs. 21%, low-risk: n = 1: no statistical statement is to be made		

thermal therapy,
bleeding when
endoscopic
therapy using
mechanical
approach or
radiological
approach was
unsuccessful, 20 –
40% complications,
using standard
therapy, Barkun
AN et al.,
Gastrointest
Endosc 2009; 69:
786-799
Control group:
"original" Poekell
"original" Rockall
group:
Low-risk, n = 1206,
RS ≤3,
intermediate-risk,
n = 1560, RS 4 – 7,
high-risk, n = 190,
RS ≥ 8
Second historical

		control group: n = 52, standard therapy, low-risk, n = 23, RS ≤ 3, intermediate-to- high risk, n = 29, RS ≥ 4, Stanley AJ et al. BMJ 2017; 356:i6432				
7.) Schmidt A, Caca K, Goelder S et al. Overthe-Scope Clips Are More Effective Than Standard Endoscopic Therapy for Patients With Recurrent Bleeding of Peptic Ulcers. Gastroenterology 2018; 155:674-686.	RCT (II)	66 patients with recurrent ulcer bleeding after an initial successful hemostasis OTSC group: n = 33, active bleeding: n = 23, patients using anticoagulants: n = 15, RS ≥7: n = 19	Further bleeding: a composite endpoint of a persistent bleeding despite endoscopic therapy according to protocol or recurrent bleeding within 7 days after successful hemostasis	Persistent bleeding: OTSC group: 2 patients, 6,0%, standard therapy group: 14 patients, 42,4%, p = 0,001 Recurrent bleeding within 7 days:	None	OTSC treatment as standard therapy in recurrent ulcer bleeding
		Standard therapy group: n = 33 (TTSC: n = 31),	Secondary endpoints: mortality, necessity of surgical or	OTSC group: 3 patients, 9,1%, standard therapy group: 5 patients, 16,1%, p = 0,468		

		cross over to OTSC is possible, active bleeding: n = 22, patients using anticoagulants: n = 12, RS ≥ 7: n = 19	angiographic rescue therapy,	Further bleeding as a composite endpoint: OTSC group: 5 patients, 15,2%, standard therapy group: 19 patients, 57,6%, p = 0,001, Cl 21,6 -		
8.) Wedi E, Richter-	Historical	FLET cohort: 118	Primary clinical	No significant differences in secondary endpoints No technical	Low patient	Forrest-la-
Schrag HJ, Fischer A et al. Multicenter evaluation of first- line endoscopic treatment with the OTSC in acute non- variceal upper	control study (III-3)	patients Primary-OTSC: n = 121	success: hemostasis by OTSC alone Secondary clinical success: OTSC in	failure Primary clinical success in 90,8%	number; Case series with pre-test/post-test outcomes; control group from 1996;	bleedings at higher risk of rebleeding Especially in the high-risk-group
gastrointestinal bleeding and comparison with the Rockall cohort: the FLETRock study. Surg		Median RS of 7 65,3% were under antiplatelet	combination with adjunctive measures	Secondary clinical success in 1,7% Clinical failure in		with RS ≥8 primary-OTSC seems to be effective

Endosc 2017; 32(1):	therapy or	Mortality in	7,5%	
307-314.	anticoagulant	comparison with		
	therapy	the "original"		
		Rockall group	Presence of	
			antiplatelet or	
	Low-risk: RS ≤3, n =		anticoagulant	
	3,	Rebleeding rates	therapy with no	
		in comparison	influence of	
	moderate-risk: RS	with the	outcome	
	4-7, n = 60,	"original" Rockall		
	high-risk: RS ≥8, n	group		
	= 55		Forrest-la-	
			bleedings at	
			higher risk of	
	Control group:		rebleeding (11	
			patients from 31	
	"original" Rockall		patients)	
	group			
			RS ≥8, n = 55:	
			In-hospital-	
			mortality overall:	
			29,1% (16 of 55	
			patients),	
			bleeding-	
			associated	
			mortality: 10,9%	
			(6 of 55 Patients,	
			CI 4,1 – 22,2),	
			predicted: 27,9%,	

9.) Manta R, Galloro	Case series with	286 patients in	Technical success	p = 0,011 Rebleeding: 21,4% (12 of 56 clips, CI 11,6 – 34,4), predicted: 53,2%, p < 0,001 Technical success	Low patient	Technical failure
G, Mangiafico S et al. First-line endoscopic treatment with over- the-scope clips in patients with either	pre-test/post- test outcomes (IV)	eleven tertiary endoscopic referral centres	Primary hemostasis:	in 97,1% (208 patients from 214)	number; Case series with pre-test/post-test outcomes	in six patients with ulcers in the fundus or posterior wall duodenal bulb
upper or lower gastrointestinal bleeding: a multicenter study. Endoscopy International Open		112 patients with antithrombotic therapy (39,2%) 214 patients with	defined as bleeding stopping without additional endoscopic treatments	Primary hemostasis in 97,1% (202 patients from 208)		Management of failure patients: Technical failure, primary
2018; 06:E1317-E- 1321.		NVUGIB Primary-OTSC	Early rebleeding rate within 24 hours	Early rebleeding rate 4,4% (9 patients from 202)		hemostasis failure, early rebleeding
		190 patients with active bleeding, 58 patients with a Forrest-lableeding, 73	Delayed rebleeding rate within 30 days	Delayed rebleeding rate 0%		

		patients with a	Management		
		Forrest-Ib-bleeding	with non-		
			endoscopic		
			procedures		
			following		
			endoscopic failure		
10.) Lamberts R,	Case series with	75 patients			
Halm U, Koch A et al.	pre-test/post-	75 patients			
Use of over-the-	test outcomes				
scope-clips (OTSC) for		CO			
hemostasis in	(IV)	68 patients with NVUGIB			
gastrointestinal		INVUGIB			
bleeding in patients					
under antithrombotic		Discoura OTCC:			
therapy. Endoscopy		Primary-OTSC in			
International Open		58,7%, Secondary-			
2017; 05:E324-E330.		OTSC in 41,3%			
2017, 03.232 1 2330.					
		60 nationts with			
		69 patients with			
		antiplatelet			
		therapy, inhibitors			
		of plasmatic			
		coagulation or both			
		ווייייייייייייייייייייייייייייייייייייי			
		Active bleeding in			
		51 patients			
		or harieties			

Study Ref.	Study type	Patient group	Key outcomes	Key results	Limitation
1. Using Hemospray Improves the Costeffectiveness Ratio in the Management of Upper Gastrointestinal Nonvariceal Bleeding Barkun A N	compared the costeffectiveness of traditional recommended endoscopic hemostatic therapies and Hemospray alone or in combination when treating nonvariceal upper gastrointestinal bleeding (NVUGIB). Costs in 2014 US\$ were based on the US National Inpatient Sample.	A decision tree of patients with NVUGIB assessed 4 possible treatment strategies: traditional therapy alone (T), Hemospray alone (H), traditional therapy completed by Hemospray if needed (T+H), or Hemospray completed by traditional therapy if needed (H+T).	Patients flow through the decision model until the final health state of having rebled (failure) or not (success) is reached.	T+H was more efficacious (97% avoiding rebleeding) and less expensive (average cost per patient of US\$9150) than all other approaches. The second most costeffective approach was H+T (5.57% less effective and US\$635 more per patient). Sensitivity analyses showed T+H followed by a strategy of H+T remained more cost-	Us healthcare costs Uncertainty of benefit in disease subgroup Limited high quality outcomes data in AUGIB for Hemospray Death no included in outcome analysis Assumes costs comparable to embolization as gold standard to achieve hemostasis Relies on DRG data,uncertain how to
				effective than H or T alone.	extrapolate to individual decision making
2. Comparison of Hemospray and Endoulot for the diagnosis and	Single centre retrospective cohort Endoscopy 2021; 53: 1–221 © 2021.	Study of short term (ST-within 72 h-) and Eu longsteam (LaTowithin ad	Study compared the rate of successful sinitial memostasis,	HP was applied a total of 239 times in	No randomisation or clear inclusion

treatment of	study	30 d-) success	rebleeding and	154 patients	/exclusion criteria or
gastrointestinal bleeding Vitali F et Al		for achieving hemostasis with HP (hemostatic podwers)and to directly compare the two agents Hemospray (HS) and Endoclot (EC).	mortality rates at 1 month,also complications	Clinical FU for at least one month was performed in 134 patients (87%) with a mean FU of 3.2 SD 5.5 mo (range 1-29). in 20 patients FU was not completed as they died from other causes than GI bleeding within 30 d after the first HP application	information on sequential treatment allocation not given HP used prophylactically in some patients at high risk of bleeding Majority Forrest 1b lesions but some low risk Forrest III included (4%)
				Overall ST success was achieved in 125 patients (81%) and LT success in 81 patients (67%).	Incomplete follow up data in 20 patients due to deaths

				Re-bleeding occurred in 27% of all patients.	
				In 72 patients (47%), HP was applied as a salvage hemostatic therapy, here ST and LT success were 81% and 64%, with re- bleeding in 32%.	
				As a primary hemostatic therapy, ST and LT success were 82% and 69%, with rebleeding occurring in 22%.	
				Perforation occurred in1.3% HS patents	
3. Randomized controlled trial of hemostatic powder versus endoscopic clipping for	Prospective single blind Randomised trial	Study of the use of TC-325 (associated with epinephrine injection) compared with the combined	Study compared the rate of successful initial hemostasis , rebleeding and mortality rates	Thirty-nine patients enrolled. Peptic ulcer was the most frequent etiology.	Small numbers/pilot study Epinephrine injected in

non-variceal upper	technique of		hemospray group after
gastrointestinal	endoscopic clipping		hemospray,?targetted?
bleeding	and epinephrine	Primary hemostasis	non standard use
bleeding	injection for the	was achieved in	epinephrine between
	treatment of		' ' '
		all Hemospray cases	groups
Baracat F et Al	patients with	and in 90% of	
	NVUGIB	Hemoclip group (p =	
		0.487).	The majority of
			patients presented
			with oozing bleeding
		Five patients in Hemospray group underwent an additional	(35/39–89.7%). Therefore cannot exptrapolate to Forrest 1a bleeding
		hemostatic	
		procedure during	
		second-look	Non blinded decision
		endoscopy, while no	making during second
		patient in the	look endoscopy,
		Hemoclip group	,,,
		needed it ($p = 0.04$).	
		песаса и (р ото ту.	non bleeding high risk
		Doblooding	stigmata in Hemospray
		Rebleeding,	group caused second
		emergency surgery	intervention
		and mortality rates	
		were similar in both	
		groups.	
		No toxicity, allergy	
		events, or	

				gastrointestinal obstruction signs were observed in Hemospray group.	
4. Outcomes from an international multicenter registry of patients with acute gastrointestinal bleeding undergoing endoscopic therapy with Hemospray Alzoubaidi D et Al	International disease registry Non cohort study	314 cases in 12 international centres Computerised database entry 167/314 patients (53%) peptic ulcer disease Forrest 1b most	Study compared the rate of successful initial hemostasis , rebleeding and mortality rates	The rate of immediate hemostasis (89.5%),rebleeding (10.3%) 7-day and 30-day mortality 11.5% and 20.1% respectively	No randomisation or sequential selection Multiple indications ,cancer bleeds over represented? Selection bias Self reported /verified outcomes
		frequent lesion reported 100/167.			
5. Effectiveness of the polysaccharide hemostatic powder in non-variceal upper gastrointestinal bleeding: Using propensity score matching	Prospective, single centre sequential cohort and case control (after matching using Propensity scoring for GBS/Forrest classification)	40 patients with UGIB treated with PHP(endoclot) therapy between April 2016 and January 2017 (PHP group) and 303	Study compared the rate of successful hemostasis and the rebleeding between the two groups after as well as before propensity score matching using the	The rate of immediate hemostasis and 7-day and 30-day rebleeding were also similar in the two groups before and	More peptic ulcers in conventional therapy group (43.2% vs 75.5% for PHP vs conventional therapy), prevalence of

		patients with UGIB	Glasgow–	after matching.	tachycardia (heart rate
Park JC et Al	Forrest I/IIa included	treated with conventional therapy between April 2012 and October 2014 Thirty patients treated with the PHP and 60 patients treated with conventional therapy were included in the matched groups.	Blatchford score and Forrest classification. Results:	After PS matching, the 7-day rebleeding rate remained similar between the groups (3.3% vs 3.3% for PHP vs conventional therapy group, respectively; P≥0.999). Moreover, the 30-day rebleeding rates between two groups also did not	over 100 beats per minute) was higher in the conventional therapy group, both before and after PS matching (P = 0.004 and P = 0.016, respectively). GBS higher in conventional group therefore groups not immediately comparable, corrected after matching.
				show significant difference (3.3% vs 8.3%	Small sample size
				for PHP vs conventional therapy group, respectively; P = 0.180).	Retrospective analysis of prospectively collected data,
				No complication reported in using	very low rebleeding rate with either modalities

				PHP	Sequential time periods for enrollment
6. Early clinical experience of the safety and efficacy of EndoClot in the management of nonvariceal upper gastrointestinal bleeding Beg S et Al	Single centre ,retrospective cohort study	EndoClot was used in 21 patient of 173 AUGIB patients rebleeding after endoscopic therapy,(43/173 only received monotherapy) Standard endotherapy plus EndoClot was required to achieve hemostasis in 21 patients: 2nd agent in 7 cases, 3rd agent in 9 cases, 4th agent in 5 cases.	End points of this study included immediate hemostasis, 30-day rebleed rate, 30-day mortality rate, and adverse events.	Immediate hemostasis achieved in all cases, a 30-day rebleed rate of 4.8% (95% confidence interval [95 %CI]-4.34% to 3.94 %), and a 30-day mortality rate of 19.0% (95 %CI 2.29%-35.91 %). Fisher's exact test demonstrated no significant difference between their 30-day mortality rate (P=0.51) and rebleed rate (P=0.31) and those	Only 14/21 pts peptic ulcer bleeds Different hierarchy of when endoclot used Non randomised/blinded No details of how data on outcomes collected
		iii 5 cases.		of the patients	

7. Results of a EndoClot Polysaccharide Hemostatic System in	observational	Rebleed: 4.8% Mortality: 19.0% Patients with acute GIB	Efficacy of endoclot haemostasis assessed at 72/h and	treated with standard endoscopic hemostatic techniques. Eighty-three percent (58/70) of the patients had upper	Non randomised,non blinded		
Nonvariceal Gastrointestinal Bleeding Prospective Multicenter Observational Pilot Study Preiss_JC et Al	pilot cohort study	Seventy patients with acute GI bleeding were recruited into the study. Forrest IB, 38/58, (66%),	1 week	and 17% (12/70) had lower GI bleeding. In the upper GI tract treatment success was achieved in 64% (30/47, 95% confidence interval, 50%-76%) after primary use and in all patients, when used after established techniques had failed (95% confidence interval, 70%-100%).	No inclusion/exclusion criteria Short follow up(72h)		

Author, publication year, journal	Country	Study Objective	Participants/ Setting	Intervention	Outcome	Study Type	Results	Conclusion
Marya et al, Jan 2019, GIE	USA	To asses the benefits of deployment of a VCE soon after admission in the management of patients presenting with melena, hematochezia, or severe anemia compared with standard of care management.	Patients presented to ER or admitted to ward with non-hematemesis UGIB.	Patients were randomly assigned to early capsule arm or standard of care.	The rate of localization of bleeding during hospitalization.	Parallel, randomiz ed, controlled trial.	Eighty-seven patients were included in this study: 45 randomized to the standard of care arm and 42 to the early capsule arm. A bleeding source was localized in 64.3% of the patients in the early capsule arm and in 31.1% of the patients in the standard of care arm (P < .01).	Early capsule endoscopy is a safe and effective alternative for the detection of the source of bleeding.
Robles et al, 2015, dig endo	Mexico	To evaluate emergency DBE and capsule endoscopy (CE) in patients with overt OGIB.	Patients who had CE and DBE due to OGIB from 2004 to 2014.	Patients with high suspicion of active OGIB were given CE If. The fresh blood was seen within 100min an emergent anterograde DBE was performed If fresh blood was seen after 100min then a	Analyzing the feasibility of this combined approach.	Retrospec tive study	Dieulafoy's lesion (DL; n = 11, 40.7%), angioectasia (n = 7, 25.9%), tumors (n = 4, 14.8%), diverticulum (n = 3, 11.1%), ulcers (n = 2, 7.4%). We diagnosed 23 lesions amenable to endoscopic hemostasis and successfully treated 21 of them (77.8%). DL detection rate was statistically higher in the emergency DBE group	Combined approach with RT viewing by CE is especially useful to identify recurrent bleeding vascular lesions such as DL.

				retrograde DBE was planned following bowel prep.			than in OGIB patients with DBE done 24 h after symptom onset (40.7% vs 0.9%, respectively, P < 0.001). Combined approach with RT viewing by CE correctly modified DBE management in four patients (25%).	
Schlag et al, 2015, GIE	German	To evaluate the impact of VCE when performed on patients with acute severe GI bleeding immediately after an initial negative upper endoscopy result.	Between December 2011 and February 2014 at a single university hospital ,Patients with melena, dark-red or maroon stool, hemodynamic instability, drop of hemoglobin level R 2 g/dL/day, and/or need of transfusion R 2 units of packed red blood cells per day.	After a negative upper endoscopy result, emergency VCE was performed by immediate endoscopic placement of the video capsule into the duodenum.	Rate of patients in whom emergency VCE correctly guided further diagnostic and therapeutic procedures.	Prospectiv e study	Upper endoscopy showed the source of bleeding in 68 of 88 patients (77%). In the remaining 20 patients (23%), emergency VCE was performed, which was feasible in 19 of 20 patients (95%; 95% confidence interval [CI], 75%-99%). Emergency VCE correctly guided further diagnostic and therapeutic procedures in 17 of 20 patients (85%; 95% CI, 62%-97%) and showed a diagnostic yield of 75% (95% CI, 51%-91%).	In patients with acute severe GI bleeding and negative upper endoscopy results, emergency VCE can be useful for the immediate detection of the bleeding site and is able to guide further therapy.
Ching et at,	UK	To compare the	Patients presenting	Patients	Patient	Prospectiv	Thirty-three patients	MACE had

2019, GIE	diagnostic yields of	to the emergency	swallowed 1 L of	tolerance,	e, single-	were included for	higher
	MACE and EGD in	department with	water containing	mucosal	blinded,	analysis (median age, 60	diagnostic
	patients with	suspected acute	40 mg of	visibility by	cohort	years; 75.8% male).	yield for focal
	suspected	upper GI bleeding,	simethicone	MACE, and	a al	MACE detected more	lesions and
	a suita uma an Cl	defined as having	to distend and	frequency of	study	focal lesions than EGD	was better
	acute upper GI	hematemesis (fresh		small-bowel		(40 versus 25,	tolerated than
	bleeding.	hematemesis (fresh blood or coffee ground vomiting) and/or melena within the previous 48 hours.	optimize gastric mucosal views immediately before MACE, which was performed using the MiroCam Navi.	small-bowel bleeding were assessed.		respectively, P = .02) but statistical significance was not reached for significant lesions (considered to be the bleeding source; 14 vs 13, respectively, P = 1). Capsule endoscopy identified an additional cause for bleeding in the small bowel in 18%. Visualization by MACE was excellent in most areas; views of the esophagus,	tolerated than EGD. It also correctly predicted safe discharge for patients with acute upper GI bleeding.
						gastroesophageal	
						junction, fundus, and	
						duodenal bulb were	
						suboptimal. MACE was	
						better tolerated than	
						unsedated	
						EGD and correctly identified patients who were safe for discharge.	

Schmidt et L, 2019, EIO	German y	feasibility and safety of the novel sensor capsule in patients with symptoms of UGIB.	Patients presenting to the emergency department with acute UGIB were screened for eligibility.	to February 2016, 104 consecutive patients who presented with symptoms of UGIB were screened. Thirty patients were included in the study.	The primary aim was to investigate feasibility and safety of the device in a clinical setting.	Prospective nonrando mized, single center, open-label study.	Capsule ingestion was well tolerated in all patients and there were no device-related adverse events. Endoscopy showed blood or hematin in the upper gastrointestinal tract of 10 of 27 patients; in 2 of 10 patients it was estimated to be more than 20 mL; in 4 of 8 patients it was between 5 and 20mL and in 4 of 8 it was estimated to < 5mL. The sensor capsule was positive in 2 of 2 patients (100 %) with > 20mL of blood or hematin and in 1 of 8 patients (12.5 %) between 5 and 20mL.	Both device and procedure proved to be safe and feasible.
----------------------------	-------------	---	--	---	--	--	--	--

Authors	Study type	Patient group	(n)	Intervention	endpoint	Outcomes	Conclusions
Nunoue J Clin Gastro 2015	Prospective Randomized	PUB randomized to Group Soft coagulation with forceps Group heater probe	Group S 56 Group H 55	Soft coagulation with forceps Heater probe	Primary hemostasis Rebleeding Complications	Group S vs H - Primary hemostasis 96% vs 67%, p<0.0001 - Rebleeding 0 vs 12% - Complications 0 vs 2	
Kim Endoscopy 2015	RCT	PUB randomized to Group APC: Injection + APC Group HFSC: Injection + HFSC	Total 151 Group APC: 75 Group HFSC: 76	Injection + APC Injection + HFSC	Hemostasis Rebleeding 30d Adv events Mortality	APC vs HFSC: - Hemostasis 96% vs 96%, n.s. - Rebleeding 6.7% vs 9.2%, n.s - AE 1.3 % vs. 2.6 %, n.s - Mortality 2.7 % vs. 2.6 %	Coagulation forceps not inferior to APC
Toka GIE 2019	Prospective Randomized	MHFSC Hemoclip	MHFSC 56 Hemoclip 56	Injection + MHFSC Injection + hemoclip	Hemostasis Rebleeding 7d Time to hemostasis	MHFSC vs Hemoclip: - Hemostasis 98,2 vs 80,4, p=0.004 - Rebleeding 3.6% vs 17.7%, p=0.04	MHFSC is more effective achieving initial hemostasis

		Admission	-	Time 302 ± 87.8	provides a
		AE	-	vs 568 ± 140.4 seconds Admission $3.50 \pm$	shorter procedure time and a
				1.03 vs 4.37 ±	lower
				1.86 days	rebleeding
			-	AE none	rate compared
					with
					Hemoclips

Authors	Study type	Patient group	(n)	Intervention	endpoint	Outcomes	Conclusions
Jensen AmJ Gastro 2017	RCT	Group Ib Group Ia+IIa+IIb	388 lb 163 la+lla+llb 225	PPI or placebo	rebleeding	PPI reduced rebleding in la+lla+llb but not lb (5.4% vs 4.9%, n.s) Ib had lower risk of rebleeding (4.9%) compared to la(22.5%), Ilb(17.6%) or Ila(11.3%)	PPI not recommended after successful treatment in Ib
Jensen GIE 2016	Prospective cohort	Patients with severe bleeding	High risk (Ia, IIa, IIb) 87 Med risk (Ib, IIc)	Doppler before and after Rx Comparison High vs med	Doppler before Doppler after Rx	High vs Med risk: - DEP+ before 87.4% vs 42.3%	DEP improves risk stratification la has higher DEP+ and

			Low risk (III) 24	and la vs lb	Rebleeding 30d	- DEP+ after 27,4% vs 13,6% la vs lb - Dep+ before 100% vs 46.7% - DEP+after 35,7% vs 0% Rebleeding 28,6% vs 0%	rebleeding rates than Ib
Camus APT 2016	Prospective observational		1264	Ulcer size	rebleeding	Rebleeding: 17.7% increasing with size	Ulcer size independent risk factor for adverse outcome
Lolle Scand J 2016	Prospective Observational	Duodenal ulcer Gastric ulcer	20059		Death Reintervention	Bleeding from DU vs GU: - all-cause mortality 90d (OR) 1.47 (1.30-1.67); p < 0.001 - all-cause mortality 30d OR 1.60 (1.43-1.77);	Duodenal location has worse all cause mortality and reintervention rate

	p < 0.001	
	- re- intervention: adjusted OR 1.86 (1.68- 2.06); p < 0.001	

Authors	Study type	Patient group	(n)	Intervention	endpoint	Outcomes	Conclusions
Jensen AmJ Gastro 2017	RCT	Group Ib Group Ia+IIa+IIb	388 Ib 163 Ia+IIa+IIb 225	PPI or placebo	rebleeding	PPI reduced rebleding in la+lla+llb but not lb (5.4% vs 4.9%, n.s) Ib had lower risk of rebleeding (4.9%) compared to la(22.5%), llb(17.6%) or lla(11.3%)	PPI not recommended after successful treatment in Ib
Kim KJG 2015 (Korean translated with Google)	Retrospective	IIb	Total 1101 IIb 126	Endoscopic therapy 84 PPI 42	Rebleeding Mortality All cause mortality	Rebleeding endo vs PPI: - 7.1% vs. 9.5%; p=0.641 Mortality endo vs ppi: - 1.2%vs10%;p=0.018 All-cause mortality endo vsPPI - 3.7% vs. 20.0%;	FIIb was associated with a significant reduction in bleeding related mortality and all cause mortality

Jensen Gastro 2017	RCT	Multiple NVUGIB Subgroup: SRH	High risk (Ia, IIa, IIb) 53 Med risk (Ib, IIc) 23	Standard Doppler guided intervention. Repeat intervention if DEP+ after intervention	Rebleeding 30d	p=0.005 Standard vs DEP guided: - la 50% vs 28,6% n.s - lla 25.9% vs 15.4% n.s - llb 25% vs 0% n.s. - la 18.8% vs 0% n.s - llc 14.3% vs 0% n.s - Total 26.3%	compared with medical therapy alone Doppler shows a significant overall 30d rebleeding decrease but its not significant in a case by case basis.
						v11.1%,p=0.0214	Limitation: n is very low
Kantowski	Prospective		la 6	Standard 25	Rebleeding	Rebleeding standard vs DEP:	Use of DEP
Scan J			lb 41	Doppler	Surgery	- 52% vs 20%, p=0.013	associated with lower
Gastro			lla 13	guided intervention	Mortality	Surgery std vs DEP:	rebleeding,
2018				35		- 2%vs 26%, p=0.017	surgery and mortality
							Limitation: most patients Ib that already has a lw rebleeding rate after Rx
							Results not grouped by

				SRH

Kyaw, M., Tse, Y., Meta-The risk of rebleeding was significantly From 1234 **Outcome No RCT** surgery more higher in TAE patients compared with Ang, D., Ang, T., & analysis/ citations, 6 definitively measures **Observational studies with** surgically treated patients (relative risk Lau, J. (2014). **Systematic retrospective** included secured selection bias. [RR] 1.82, 95% confidence interval **Embolization** review comparative rebleeding hemostasis, versus surgery for studies were rate, all-cause [95 %CI] 1.23-2.67), with no statistically Patients with higher surgical no significant peptic ulcer included that mortality significant heterogeneity among the risk offered TAE. difference in included studies (P = 0.66, $I^2 = 0.0\%$). bleeding after involved 423 rate, and mortality rate or failed endoscopic patients (TAE, need for No significant difference in mortality (RR requirement of additional hemostasis: A 182; surgery, 0.87, 95 %CI 0.59-1.29) or requirement additional 241). meta-analysis. interventions for additional interventions (RR 1.67, interventions. to secure **Endoscopy TAE** patients 95 %CI 0.75-3.70) was shown between International hemostasis. were older (mean the two groups. Open, 2(1), 14. age, TAE 75, doi:10.1055/ssurgery, 68). 0034-1365235 2 studies from Asian populations and 4 studies from European populations.

Beggs, Andrew D., Dilworth, Mark P., Powell, Susan L., Atherton, Helen, & Griffiths, Ewen A. (2014). A systematic review of transarterial embolization versus emergency surgery in treatment of major nonvaricea upper gastrointestinal bleeding. Clinical and Experimental Gastroenterology 7(1), 93-104.	review and meta-analysis	347 patients in the TAE group and 364 in the surgery group. Patients in the TAE group were more likely to have ischemic heart disease (odds ratio [OR] =1.99; 95% confidence interval [CI]: 1.33, 2.98; P=0.0008; I	secondary outcomes were rates of medical postoperative complications (pneumonia, myocardial infarction [MI], kidney injury, and stroke) and length of hospital stay.	Compared with TAE, surgery was associated with a lower risk of rebleeding (OR =0.41; 95% CI: 0.22, 0.77; P<0.0001; I (2)=55% [random effects]). There was no difference in mortality (OR =0.70; 95% CI: 0.48, 1.02; P=0.06; I (2)=44% [fixed effects]) between TAE and surgery.	The studies reviewed mainly comprised of retrospective cohort data, with no age, sex or comorbidity matching, due to the limitations of the type of study being undertaken. It could be argued that there was severe selection bias in these studies as patients with greater comorbidity were selected for TAE.	increased risk of rebleeding rates after TAE; however, there were no

Tarasconi, A., Baiocchi, G., Pattonieri, V., Perrone, G., Abongwa, H., Molfino, S., . . . Catena, F. (2019). Transcatheter arterial embolization versus surgery for refractory nonvariceal upper gastrointestinal bleeding: A metaanalysis. World Journal of Emergency Surgery, 14(1), 1-13.

Systematic Adult patients review and with refractory **NVUGIB** (defined metaas failure of analysis endoscopic hemostasis or rebleeding after successful endoscopic hemostasis). Direct comparison of TAE and surgery

All-cause continued bleeding; both procedurerelated and not procedurerelated; need for further intervention for any reason

Only 13 studies were included for a total mortality with of 1077 patients (TAE group 427, surgery no time limit; group 650). All selected papers were nonrebleeding or randomized studies: ten were singlecenter and two were double-center retrospective comparative studies, while complications, only one was a multicenter prospective cohort study. No comparative randomized by each attending surgeon. clinical trial is reported in the literature.

> Mortality. Pooled data (1077 patients) showed a tendency toward improved mortality rates after TAE, but this trend was not statistically significant (OD = 0.77; 95% CI 0.50, 1.18; P = 0.05; $I^2 = 43\%$ [random effects]). Significant heterogeneity was found among the studies.

Rebleeding rate. Pooled data (865) patients, 211 events) showed that the incidence of rebleeding was significantly higher for patients undergoing TAE (OD = 2.44; 95% CI 1.77,3.36; P = 0.41; $I^2 = 4\%$ [fixed effects]).

Complication rate. Pooling of the data (487 patients, 206 events) showed a sharp reduction of complications after TAE when compared with surgery (OD = 0.45; 95% CI 0.30, 0.47; P = 0.24; $I^2 = 26\%$ [fixed effects1).

The retrospective nature of the The present study majority of included studies leads to selection bias. Furthermore, the decision of whether to proceed with surgery or refer to TAE was made on a case-by-case basis Thus, external validity is low. Another limitation involves the variability in etiology of the refractory bleeding. TAE techniques and surgical procedure also differ consistently between different studies. Frame time for mortality detection differs between the studies.

shows that TAE is a safe and effective procedure; when compared to surgery, TAE exhibits a higher rebleeding rate, but this tendency does not affect the clinical outcome as shown by the comparison of mortality rates (slight drift toward lower mortality for patients undergoing TAE). The present study suggests that TAE could be a viable option for the first-line therapy of refractory **NVUGIB** and sets the foundation for the design of future randomized clinical trials.

Need for further intervention. Pooled data (698 patients, 165 events) revealed a significant reduction of further intervention in the surgery group (OD = 2.13; 95% CI 1.21, 3.77; P = 0.02; I² = 56% [random effects]). A great degree of heterogeneity was found among the studies.

Lau, J., Sung, J., Lam, Y.,	Prospect	3473 patients with	Outcome	Of the 48 patients who	The results	In patients with peptic
Chan, A., Ng, E., Lee, D.,	ive	bleeding peptic	variables	were assigned to	of	ulcers and recurrent
Chung, S. (1999).	randomi	ulcers admitted to	included the	endoscopic	randomize	bleeding after initial
Endoscopic retreatment	zed trial	the hospital were	duration of	retreatment, 35 had	d studies	endoscopic control of
compared with surgery in		included in the study	hospitalizati	long-term control of	have been	bleeding, endoscopic
patients with recurrent		if they have	on after	bleeding. Thirteen	limited by	retreatment reduces
bleeding after initial		recurrent bleeding in	treatment,	underwent salvage	the	the need for surgery
endoscopic control of		the 72-hour period	the need for	surgery, 11 because	inclusion	without increasing the
bleeding ulcers. The New		after endoscopic	hospitalizati	retreatment failed and	of small	risk of death and is
England Journal of		treatment.	on in the	2 because of	numbers	associated with fewer
Medicine, 340(10), 751-6.			intensive	perforations resulting	of patients	complications than
			care unit,	from	or the use	surgery.
		1169 of 3473 adults	the need for	thermocoagulation. Five	of	
		underwent	blood	patients in the	suboptima	
		endoscopy to	transfusion,	endoscopy group died	I	

Schmidt A, Gölder S, Goetz	Prospect	reestablish hemostasis. Of 100 patients with recurrent bleeding, 7 patients with cancer and 1 patient with cardiac arrest were excluded from the study; 48 patients were randomly assigned to undergo immediate endoscopic retreatment and 44 were assigned to undergo surgery.	treatment- related complicatio ns, and 30- day mortality. Treatment- related complicatio ns included any complicatio ns that developed after endoscopic retreatment and subsequent salvage surgery.	within 30 days, as compared with eight patients in the surgery group (P=0.37). Seven patients in the endoscopy group (including 6 who underwent salvage surgery) had complications, as compared with 16 in the surgery group (P=0.03). The duration of hospitalization, the need for hospitalization in the intensive care unit and the resultant duration of that stay, and the number of blood transfusions were similar in the two groups. In multivariate analysis, hypotension at randomization (P=0.01) and an ulcer size of at least 2 cm (P=0.03) were independent factors predictive of the failure of endoscopic retreatment.	treatment at primary endoscopy .	In prospective
----------------------------	----------	---	---	---	----------------------------------	----------------

M, Meining A, Lau J, von	ive,	recurrent peptic	endpoint of	after per-protocol	nt	randomized trial, we
Delius S, Escher M,	randomi	ulcer bleeding	the study	hemostasis was	duration	found endoscopic
Hoffmann A, Wiest R,	zed,	following initially	was	observed in 14 patients	was	treatment with OTSCs
Messmann H, Kratt T,	controll	successful	"further	(42.4%) in the standard	relatively	to be superior to
Walter B, Bettinger D, Caca	ed	hemostasis (66	bleeding," a	therapy group and 2	long (3.5	standard therapy with
K. Over-the-Scope Clips Are	multicen	patients in the	combined	patients (6.0%) in the	years) and	TTSCs for patients with
More Effective Than	ter	intent-to-treat	endpoint of	OTSC group ($P = .001$).	recruitmen	recurrent peptic ulcer
Standard Endoscopic	study	analysis) were	(1)	Recurrent bleeding	t rates of	bleeding.
Therapy for Patients With		randomly assigned to	persistent	within 7 days occurred	the	
Recurrent Bleeding of		groups (1:1) that	bleeding	in 5 patients (16.1%) in	participati	
Peptic Ulcers.		underwent	despite	the standard therapy	ng centers	
Gastroenterology.		hemostasis with	endoscopic	group vs 3 patients	were	
2018;155:674–686.e6.		either OTSC or	therapy	(9.1%) in the OTSC	inhomoge	
		standard therapy.	according to	group (<i>P</i> = .468).	neous,	
			the protocol	Further bleeding	most likely	
			or (2)	occurred in 19 patients	because	
			recurrent	(57.6%) in the standard	rebleeding	
			bleeding	therapy group and in 5	from	
			within 7	patients (15.2%) in the	peptic	
			days after	OTSC group (absolute	ulcers is	
			initial	difference 42.4%; 95%	rare.	
			successful	confidence interval		
			endoscopic	21.6–63.2; <i>P</i> = .001)		
			therapy.	Within 30 days of	Standard	
				follow-up, 1 patient in	therapy	
				the standard therapy	options in	
			Secondary	group (3.0%) and 1	the control	
			endpoints	patient in the OTSC	group	
			were as	group (3.0%) required	were	
			follows:	surgical therapy (P =	strictly	
			mortality	.999). Within 30 days of	limited per	
			(hospital	the procedure, 2	protocol	

and 30-day	patients died in the	and did
mortality),	standard therapy group	not allow
necessity of	(6.3%) and 4 patients	for other
surgical or	died in the OTSC group	alternative
angiographi	(12.1%) $(P = .672)$.	s like use
c salvage	There were no	of fibrin
therapy,	significant differences in	glue or
duration of	the other secondary	hemostati
hospital and	endpoints.	c powders.
ICU stay,		This may
number of		have
blood units		contribute
transfused,		d to the
number of		high rate
repeat		of further
endoscopies		bleeding in
, or		this group.
necessity of		
>2		
endoscopic		Furthermo
treatment		re, the
modalities		crossover
for		design,
successful		implement
hemostasis		ed for
and		ethical
complicatio		reasons,
ns		with
associated		possible
with		immediate
endoscopic		switch to
		OTSC after
		0150 0100

therapy.	failure of	
	standard	
	therapy	
	may have	
	reduced	
	efforts of	
	the	
	endoscopi	
	st to	
	achieve	
	hemostasi	
	S	
	conventio	
	nally.	
	Additionall	
	y, any	
	outcomes	
	"downstre	
	am" of the	
	crossover,	
	such as	
	rebleeding	
	, surgery,	
	angiograp	
	hic	
	treatment,	
	and	
	mortality	
	cannot be	
	correlated	
	with the	
	index	

	1	
		treatment
		and also
		make the
		study
		results
		difficult to
		compare
		with non-
		crossover
		studies.
		The study
		was
		unblinded
		and there
		was no
		protocol
		definition
		of how
		many clips
		and how
		much
		volume of
		epinephrin
		e should
		be used.
		Moreover,
		we did not
		predefine
		how much
		time the
		endoscopi
		st should

1	 · · · · · · · · · · · · · · · · · · ·	
		spent on
		hemostasi
		s until it
		was
		considered
		as
		unsuccessf
		ul.
		Another
		limitation
		of our
		study may
		be
		heterogen
		eity in PPI
		treatment.
		According
		to the
		study
		protocol,
		all patients
		received
		80 mg
		pantopraz
		ole bolus,
		but choice
		of PPI
		regimen
		after initial
		bolus

					administra tion was left to the choice of the investigato rs.	
Kyaw, Moe, Tse, Yee, Ang,	Systema	There were two	Outcome	From 1234 citations, 6	Although	A higher rebleeding
Daphne, Ang, Tiing, and	tic	studies from Asian	measures	retrospective	numerous	rate was observed
Lau, James. "Embolization	review	populations and four	included	comparative studies	case	after TAE, suggesting
versus Surgery for Peptic		studies from	rebleeding	were included that	studies	surgery more
Ulcer Bleeding after Failed		European	rate, all-	involved 423 patients	exist on	definitively
Endoscopic Hemostasis: A		populations. All 6	cause	(TAE, 182, 56% male;	the use of	secured hemostasis,
Meta-analysis." 2.1 (2014):		studies were	mortality	surgery, 241, 68%	TAE to	with no significant
E6-E14. Web.		published as full	rate, and	male). TAE patients	treat	difference in mortality
		papers. A total of 423	need for	were older (mean age,	NVUGIB,	rate or requirement of
		patients were	additional	TAE 75, surgery, 68).	there are	additional
		included in the	intervention	The risk of rebleeding	few	interventions. The TAE
		analysis, of whom	s to secure	was significantly higher	published	patients were older
		182 patients	hemostasis.	in TAE patients	articles	and in poorer health,
		underwent TAE (56%		compared with	that	thus future
		male) and 241		surgically treated	compare	randomized studies are
		patients received		patients (relative risk	TAE with	needed for accurate
		surgery (68% male).		[RR] 1.82, 95%	surgery. To	comparison of the two
		All 4 studies reported		confidence interval	date there	modalities.
		the TAE cohort to		[95 %CI] 1.23 – 2.67),	are no	
		have patients with		with no statistically	prospectiv	
		higher procedure-		significant	e data	
		related risks.		heterogeneity among	comparing	
				the included studies	the role of	

	$(P=0.66, I^2=0.0\%).$	TAE and
	After sensitivity analysis	surgery as
	excluding studies with a	a salvage
	large age difference	therapy
	between the two	for
	groups, a higher risk of	patients
	bleeding remained in	with
	the TAE group (RR 2.64,	NVUGIB.
	95 %CI] 1.48-4.71). No	After
	significant difference in	exclusion
	mortality (RR 0.87,	of any
	95 %CI 0.59-1.29) or	studies
	requirement for	that did
	additional interventions	not
	(RR 1.67, 95 %CI 0.75-	compare
	3.70) was shown	TAE with
	between the two	surgery,
	groups.	only 6
		studies
		were
		eligible for
		the meta-
		analysis.
		These
		studies are
		all
		retrospecti
		ve
		observatio
		nal
		comparati
		ve studies.

		The main
		problem
		with such
		observatio
		nal studies
		was
		patient
		selection
		bias.
		Conventio
		nal
		statistical
		approache
		s used in
		observatio
		nal
		analyses
		have
		limited
		ability to
		address
		the
		influence
		of
		unmeasur
		ed
		confounde
		rs on the
		overall
		effect
		estimate.

Walia, Sukhpreet S, Aadesh	Case	This study involved	Hemostasis,	Five patients were	Small	In patients with
Sachdeva, John J Kim,	series.	consecutive patients	rebleeding,	treated with	number of	difficult-to-control
Donald J Portocarrero,		with overt	adverse	cyanoacrylate spray	patients.	GI bleeding failing
Terence D Lewis, and Yan S		GI bleeding who	events, and	during endoscopy for	•	conventional endoscop
Zhao. "Cyanoacrylate Spray		were treated with n-	technical	persistent bleeding (duo		ic therapies,
for Treatment of Difficult-		butyl-2-	failure	denal ulcer in 3, gastric		cyanoacrylate spray
to-control GI Bleeding."		cyanoacrylate spray	associated	vascular ectasia in 1,		was effective in
Gastrointestinal Endoscopy		during endoscopy for	with	rectal		achieving
78.3 (2013): 536-39. Web.		persistent bleeding d	cyanoacryla	postpolypectomy bleedi		immediate hemostasis.
		espite conventional	te spray.	ng in 1)		Prospective studies
		hemostatic		after failed conventiona		with a larger number
		therapies.		I therapies.		of patients to evaluate
				Immediate hemostasis a		the role of the
				nd technical success		cyanoacrylate spray
				were achieved in all		technique during
				patients. At a median		endoscopy for
				follow-up of 42 days		GI bleeding are
				(range 38-120 days), 2		needed.
				patients developed		
				recurrent bleeding. One		
				patient experienced		
				rebleeding 2 days after		
				the procedure,		
				subsequently requiring		
				radiographic		
				intervention and		
				surgery. Another		
				patient had		
				recurrent bleeding from		
				a		
				different bleeding sourc		
				e 18 days after the		

	T	T	I	T	I	T
				procedure. No adverse		
				events attributed to the		
				cyanoacrylate spray		
				were observed.		
Katano, Takahito, Tsutomu	Retrosp	There were 554	Successful	TAE was attempted in	Further	TAE is a safe and
Mizoshita, Kyoji Senoo,	ective	patients who	hemostasis;	15 patients (2.7%). In 12	investigati	effective first-choice
Satoshi Sobue, Hiroki	study	required endoscopic	successful	(80.0%) of 15 patients,	on is	treatment for patients
Takada, Tomoyuki		hemostasis for	TAE; need	embolization with coils	needed to	in whom endoscopic
Sakamoto, Hisato		bleeding gastric or	for	was successful. In one	determine	hemostasis has failed.
Mochiduki, Takanori Ozeki,		duodenal ulcer.	emergent	patient (6.7%),	whether	
Akihisa Kato, Kayoko		There were 397	salvage	embolization was	emergent	
Matsunami, Kazuyuki Ito,		patients with	surgery	ineffective. This patient	salvage	
and Takashi Joh. "The		bleeding gastric		underwent emergent	surgery	
Efficacy of Transcatheter		ulcer, and 157		salvage surgery. In two	should be	
Arterial Embolization as the		patients with		(13.3%) of 15 patients,	performed	
First-choice Treatment after		bleeding duodenal		no extravasation was	when blind	
Failure of Endoscopic		ulcer. Initial		observed during	embolizati	
Hemostasis and Endoscopic		endoscopic		arteriography. These	on fails.	
Treatment Resistance		hemostasis failed in		patients were cured		
Factors." Digestive		six patients, and TAE		with medication. In two		
Endoscopy 24.5 (2012):		was performed; one		patients, ulcer		
364-69. Web.		of these six patients		perforation was		
		underwent surgery		observed during		
		after TAE. Of the 548		endoscopy after		
		patients in whom		rebleeding. These		
		initial endoscopic		patients underwent		
		hemostasis was		surgery. In total, 3		
		successful, 33		(0.5%) of 554 patients		
		patients experienced		underwent surgery. No		
		rebleeding.		recurrent bleeding was		
		Rebleeding was		observed after TAE.		

T 1	defined as	Hamadahin I. d. o	
	defined as	Hemoglobin level <8	
	hematemesis or	g/dL at presentation	
	melena with	(P=0.02), Rockall score	
	hypotension. Of the	≥7 at presentation	
	33 patients who	(P=0.002), and Forrest	
	experienced	class Ia/Ib at initial	
	rebleeding, four died.	endoscopic hemostasis	
	In these four	(<i>P</i> <0.001) were found to	
	patients, rebleeding	be independent	
	led to	significant endoscopic	
	cardiopulmonary	treatment resistance	
	arrest before	factors.	
	endoscopic therapy		
	or TAE was		
	performed. Second		
	or third endoscopic		
	treatments were		
	performed in 29 of		
	the patients who		
	experienced		
	rebleeding; the		
	second or third		
	endoscopic		
	hemostasis failed in		
	11 of these patients.		
	-		
	9 underwent TAE.		
	There were two		
	•		
	•		
	-		
	second or third endoscopic hemostasis failed in 11 of these patients. Of these 11 patients, 9 underwent TAE.		

patients surgery.	underwent			
Park, Ho Jong Chun, Jung Suk Oh, Hyo Jun Ahn, and Myung-Gyu Choi. "Transcatheter Arterial Embolization for Endoscopically Unmanageable Nonvariceal Upper Gastrointestinal Bleeding." Scandinavian Journal of Gastroenterology 50.7 (2015): 809-15. Web. Among the patients of received angiogram (89.4%) to embolizate in the patients of the	complications, and 30-day rebleeding and mortality rates. he 66 who had phy, 59 underwent tion (Table gency 4 h) and 24 h to 7 lbolization ormed in 21 and 30	TAE was feasible in 59 patients. The technical success rate was 98%. Rebleeding within 30 days was observed in 47% after an initial TAE and was managed with re-embolization in 8, by endoscopic intervent ion in 5, by surgery in 2, and by conservative care in 12 patients. The 30-day overall mortality rate was 42.4%. In the case of initial endoscopic hemo stasis failure (n = 34), 31 patients underwent angiographic embolization, which was successful in 30 patients (96.8%). Rebleeding occ urred in 15 patients (50%), mainly because of malignancy. Two factors were independent predictors	First, this study was designed as a retrospecti ve study and was not randomize d. Second, long-term follow up was not included in this study. Third, as we mentioned previously, almost half of the patients had bleeding from upper Gl malignanci es.	TAE controlled acute non-variceal upper GI bleeding effectively. TAE may be considered when endoscopic thera py is unavailable or unsuccessful. Correction of coagulopathy before TAE is recommended.

		respectively.		of rebleeding within 30		
				days by multivariate		
				analysis: coagulopathy		
				(odds ratio [OR] = 4.37;		
				95% confidence interval		
				[CI]: 1.25-15.29; p =		
				0.021) and embolization		
				in ≥2 territories (OR =		
				4.93; 95% CI: 1.43-		
				17.04; p = 0.012).		
				Catheterization-related		
				complications included		
				hepatic artery		
				dissection and splenic		
				embolization.		
Chiu, Philip, Henry Joeng,	Prospect	Consecutive patients	The primary	A total of 153 patients	First, the	After endoscopic
Catherine Choi, Kelvin Tsoi,	ive	who	outcome	were randomized to the	study	hemostasis, high-dose
Kwok Kwong, Siu Lam, and	randomi	received endoscopic	was the	PPI infusion group and	could not	PPI infusion was not
Joseph Sung. "High-dose	zed	treatment	rebleeding	152 to the second-look	be	inferior to second-look
Omeprazole Infusion	controll	for bleeding peptic ul	rate within	endoscopy	conducted	endoscopy with bolus
Compared with Scheduled	ed	cers	30 days	group. Rebleeding	as a	PPI in
Second-look Endoscopy for	noninfer	(actively bleeding,	after	occurred within 30 days	double-	preventing peptic ulcer
Prevention of Peptic Ulcer	iority	with nonbleeding	initial hemo	in 10 patients (6.5%) in	blind trial	rebleeding.
Rebleeding: A Randomized	trial	visible vessels) were	stasis.	the PPI infusion group	because	
Controlled Trial." 48.8		randomized to two		and in 12 patients	one of the	
(2016): 717-22. Web.		treatment groups		(7.9%) in the second-	treatment	
		following hemostasis.		look endoscopy group	arms	
		One group (second-		(P=0.646). Surgery was	involved	
		look endoscopy		required for rebleeding	additional	
		group) received the		in six patients from the	endoscopy	
		proton pump		PPI infusion group and		

	1	
		patients
		were
		stratified
		to receive
		therapeuti
		С
		endoscopy
		based on
		endoscopi
		c stigmata
		of recent
		hemorrhag
		e alone.
		NA/jala ala o
		With the
		current
		sample
		size, we
		could only
		declare
		that the
		rebleeding
		risk of
		high-dose
		PPI
		infusion is
		not
		inferior to
		that of
		scheduled
		second-
		look

					endoscopy	
Chiu, Philip Wai Yan, Enders	Retrosp	Patients with a	Clinical	One hundred and	Our study	With advances in
Kwok Wai Ng, Simon Kin	ective	bleeding peptic ulcer	outcomes	twenty-three patients	is limited	therapeutic
Hung Wong, Anthony Yuen	cohort	recruited from the	(including	received salvage	by the	endoscopy, patients
Bun Teoh, Frances Ka Yin	study	database were	ulcer	surgery in the 1st	retrospecti	who
Cheung, Man-Yee Yung,		divided into two 5-	rebleeding	cohort, while 42	ve review	developed failed endos
Joseph Jao Yiu Sung, and		year cohorts: the 1st	and	patients received	of a	copic hemostasis are
James Yun Wong Lau.		cohort was from	mortality),	surgical hemostasis for	prospectiv	likely to be poor
"Surgical Salvage of		January 1993 to	performanc	the bleeding peptic ulce	ely	surgical candidates
Bleeding Peptic Ulcers after		December 1998 and	e of minimal	r in the 2nd cohort.	collected	with multiple
Failed Therapeutic		the 2nd cohort was	against	Patients in the 2nd	database	comorbidities. The
Endoscopy." Digestive		from January 1999 to	definitive	cohort consisted of a	and the	approach to salvage
Surgery 26.3 (2009): 243-		December 2004. The	surgery and	larger proportion of in-	limited	surgery has inclined
48. Web.		division between the	rate of	hospital bleeders	number of	towards minimal
		2 cohorts is	complicatio	(cohort 1: 12.2%, cohort	patients	surgery to hasten
		according to the	ns	2: 42.9%; p < 0.005) and	recruited.	surgical hemostasis am
		timing of the		had a significantly	It is	ong these fragile
		introduction of PPI		higher proportion of	difficult to	patients.
		infusion after		comorbidities. A larger	conduct a	
		endoscopic		number of patients	prospectiv	
		hemostasis in our		received minimal	е	
		unit. Patients who		surgery in cohort 2	randomize	
		first developed		(cohort 1: 42.3%, cohort	d trial	
		rebleeding were		2: 73.8%; p < 0.005).	comparing	
		managed by a			minimal or	
		repeated attempt at			definitive	
		endoscopic			surgery	
		hemostasis. Those			after failed	
		who failed			endoscopi	
		hemostasis after a			c	

	I		I		I	
		repeated endoscopy			hemostasi	
		or those who had a			s for	
		2nd rebleeding were			bleeding	
		subjected to surgical			peptic	
		hemostasis. The type			ulcers	
		of salvage surgery			because of	
		performed for			the low	
		uncontrolled ulcer			rate of	
		bleeding was either			uncontroll	
		minimal or definitive			ed	
		surgery. One			rebleeding	
		hundred and twenty-			, limited	
		three patients			number of	
		received salvage			candidates	
		surgery in the 1st			and the	
		cohort, while 42			logistical	
		patients received			problem of	
		surgical hemostasis			randomizi	
		for the bleeding			ng patients	
		peptic ulcer in the			in their	
		2nd cohort.			exsanguin	
					ations.	
Wong, Tiffany C.L, Wong,	Retrosp	Patients with peptic	All-cause	Thirty-two patients	Retrospect	In patients with ulcer
Ka-Tak, Chiu, Philip W.Y,	ective	ulcer bleeding in	mortality,	underwent TAE and 56	ive study.	bleeding after failed
Teoh, Anthony Y.B, Yu,	study.	whom endoscopic	rebleeding,	underwent surgery. In		endoscopic
Simon C.H, Au, Kim W.L,		hemostasis failed.	reinterventi	those who underwent		hemostasis, TAE
and Lau, James Y.W. "A			on, and	TAE,		reduces the need for
Comparison of			complicatio	the bleeding vessels		surgery without
Angiographic Embolization				were gastroduodenal		increasing the overall

with Surgery after Failed	n rate.	artery (25 patients), left	mortality and is
Endoscopic Hemostasis to		gastric artery (4	associated with fewer
Bleeding Peptic Ulcers."		patients), right gastric	complications.
Gastrointestinal Endoscopy		artery (2 patients), and	
73.5 (2011): 900-08. Web.		splenic artery (1	
		patient). Active	
		extravasation was seen	
		in 15 patients (46.9%).	
		Embolization was	
		attempted in 26	
		patients, and	
		angiographic coiling was	
		successful in 23 patients	
		(88.5%). Bleeding recurr	
		ed in 11 patients	
		(34.4%) in the TAE	
		group and in 7 patients	
		(12.5%) in the surgery	
		group (P=.01). More	
		complications were	
		observed in patients	
		who underwent surgery	
		(40.6% vs 67.9%, P=.01).	
		There was no difference	
		in 30-day mortality	
		(25% vs 30.4%, P=.77),	
		mean length of hospital	
		stay (17.3 vs 21.6 days,	
		P=.09), and need for	
		transfusion (15.6 vs	
		14.2 units, P=.60)	
		between the TAE and	

				surgery groups.		
Skinner M, Gutierrez JP,	Retrosp	All patients who	Outcome	Twelve consecutive	First, it is	The novel over-the-
Neumann H, Wilcox CM,	ective	underwent	data for the	patients (67% men;	retrospecti	scope clip (OTSC) use
Burski C, Mönkemüller K.	case	placement of an	procedure	mean age 59, range 29-	ve and	represents an
Over-the-scope clip	series	OTSC for severe	included	86) with ongoing upper	therefore	effective, easily
placement is effective		recurrent upper	achievemen	gastrointestinal	has the	performed, and
rescue therapy for severe		gastrointestinal	t of primary	bleeding despite	limitations	safe endoscopic therap
acute upper gastrointestinal		bleeding over a 14-	hemostasis,	previous endoscopic	of any	y for various causes of
bleeding. Endosc Int Open.		month period was	episodes of	management were	such	severe
2014;2(1):E37-E40.		studied. Twelve	recurrent	included. They had a	study.	acute gastrointestinal
doi:10.1055/s-0034-		consecutive patients	bleeding,	mean ASA score of 3	Second, it	bleeding when
1365282		(67 % men; mean age	and	(range 2-4), a mean	reflects	conventional endosco
		59, range 29-86)	complicatio	hemoglobin of 7.2 g/dL	the	ic techniques
		with ongoing upper	ns.	(range 5.2 – 9.1), and	experience	have failed. This
		gastrointestinal		shock was present in	of a	therapy should be
		bleeding despite		75% of patients. They	tertiary-	added to the
		previous endoscopic		had all received packed	care	armamentarium of
		management were		red blood cells (mean	center;	therapeutic
		included.		5.1 units, range 2-12).	however,	endoscopists.
				The etiology of bleeding	the scopes	
				was: duodenal ulcer	used are	
				(n = 6), gastric ulcer	present in	
				(n = 2) Dieulafoy lesion	most	
				(n = 2), anastomotic	hospitals.	
				ulceration (n = 1),		
				Mallory – Weiss tear		
				(n = 1). Hemostasis was		
				achieved in all patients.		
				Rebleeding occurred in		
				two patients 1 day and		
				7 days after OTSC		

				placement. There were		
				no complications		
				associated with OTSC		
				application.		
				аррисаціон.		
Repici, A., Ferrari, De	Retrosp	Between January	Hemostasis,	Definitive haemostasis	Due to the	In our retrospective
Angelis, Caronna, Barletti,	ective	1995 and March	Rebleeding,	was achieved in 17 out	retrospecti	series, cyanoacrylate
Paganin, Musso, Carucci,	study	1998, 18 out of 176	months of	of 18 patients treated	ve nature,	plus adrenaline
Debernardi-Venon,		patients, referred to	follow-up	with cyanoacrylate. One	the small	injection was found to
Rizzetto, and Saracco.		our Unit for non-		patient needed surgery.	number of	be a potentially safe
"Adrenaline plus		variceal upper		No early or late	patients	and effective
Cyanoacrylate Injection for		gastrointestinal		rebleeding occurred	and the	alternative
Treatment of Bleeding		bleeding, were		during the follow-up.	absence of	to endoscopic haemost
Peptic Ulcers after Failure		treated with		No complications or	randomisa	asis when conventional
of Conventional Endoscopic		intralesional injection		instrument lesions	tion, in our	treatment modalities
Haemostasis." Digestive and		of adrenaline plus		related to cyanoacrylate	study, no	fail in
Liver Disease 34.5 (2002):		undiluted		were recorded.	definitive	controlling bleeding fro
349-55. Web.		cyanoacrylate.			conclusion	m gastroduodenal
		Persistent bleeding			s could be	ulcers.
		after endoscopic			drawn	
		haemostasis or early			concerning	
		rebleeding were the			the use of	
		indications for			the	
		cyanoacrylate			cyanoacryl	
		treatment.			ate in the	
					treatment	
					of severe	
					ulcer	
					bleeding.	
Loffroy R, Guiu B, Mezzetta	Retrosp	60 consecutive	Success rate	Embolization was	Although	Selective angiographic
L, et al. Short- and long-	ective	emergency	of	feasible and successful	rates of	embolization is safe
term results of		embolization	embolizatio	in 57 patients. Sandwich	procedural	and effective for

transcatheter embolization	review	procedures in	n,	coiling of the	success	controlling life-
for massive arterial		hemodynamically	rebleeding,	gastroduodenal artery	(95%) and	threatening bleeding fr
hemorrhage from		unstable patients.	complicatio	was used in 34 patients,	early	om gastroduodenal
gastroduodenal ulcers not		Patients were	ns,	and superselective	clinical	ulcers. The procedure
controlled by endoscopic		referred for selective	mortality,	occlusion of the	success	usually obviates the
hemostasis. Can J		angiography	cause of	terminal feeding artery	(71.9%)	need for emergency
Gastroenterol.		between 1999 and	mortality(re	(with glue, coils or	were high	surgery in these high-
2009;23(2):115–120.		2008	current	gelatin particles) was	in our	risk patients. Survival
doi:10.1155/2009/795460		after failed endoscop	bleeding vs	used in 23 patients.	study,	depends chiefly on
		ic treatment of	underlying	Early rebleeding	26.7% of	underlying conditions.
		massive bleeding fro	illness)	occurred in 16 patients	patients	
		m gastrointestinal		and was managed with	died	
		ulcers. Mean follow-		endoscopy (n=8),	within the	
		up was 22 months.		reembolization (n=3) or	first	
				surgery (n=5). No major	month.The	
				embolization-related	impact of	
				complications occurred.	medicatio	
				Sixteen patients died	ns	
				within 30 days after	associated	
				embolization (including	with	
				three who died from	increased	
				rebleeding) and 11 died	bleeding	
				thereafter. No	on the	
				late bleeding recurrenc	one-	
				es were reported.	month	
					mortality	
					rate was	
					not clear	
					in our	
					study.	
					Unfortuna	
					tely, the	

	1	T	I	T	ı	Г
					postproce	
					dural	
					morbidity	
					rate was	
					not	
					compared	
					between	
					the two	
					techniques	
					. Few data	
					are	
					available	
					regarding	
					postsurgic	
					al	
					morbidity,	
					most	
					notably	
					complicati	
					ons	
					related to	
					the	
					surgical	
					method	
					and	
					infectious	
					complicati	
					ons.	
Roy A, Kim M, Hawes R,	Systema	The study population	The	The MedPAR claims	There are	Failure to achieve
Varadarajulu S. The clinical	tic	consisted of all	outcomes	data evaluated 13,501	several	hemostasis at the
and cost implications of	review	patients who had	evaluated	hospitalizations, of	limitations	index endoscopy has
	l	1	l	1	1	

failed endoscopic	claims for receiving a	compared	which 12,242 (90.6%)	to this	significant clinical and
hemostasis in	blood transfusion	all-cause	reported one UGI	study.	cost implications.
gastroduodenal ulcer	and underwent an	mortality	endoscopy, 817 (6.05%)	One, the	When feasible, a
bleeding. <i>United European</i>	UGI endoscopy for	during	reported >1 UGI	database	repeat endoscopy
Gastroenterol J.	gastroduodenal ulcer	hospitalizati	endoscopy, 303 (2.24%)	does not	must be attempted
2017;5(3):359–364.	bleeding.	on, hospital	reported IRH after	capture	followed by IRH.
doi:10.1177/205064061666		LOS,	failed endoscopy and	individual	Surgery should
3570		hospital	139 (1.03%) reported	componen	preferably be reserved
		costs and	surgeries after failed	ts of a	as a last resort for
		hospital	endoscopy. All cause-	treatment	patients who fail other
		payments	mortality was	and hence	treatment measures.
		for patients	significantly lower for	the	
		who	patients who	specific	
		underwent	underwent only one	nature or	
		blood	UGI endoscopy (3%)	timing of	
		transfusion	compared to patients	interventio	
		and	requiring >1 endoscopy	ns	
		required	(6%), IRH (9%) or	undertake	
		one	surgery	n are	
		endoscopy,	(14%), p < 0.0001. The	unknown.	
		>1	median LOS was	Two,	
		endoscopy,	significantly lower for	details of	
		IRH	patients who	pharmacol	
		following	underwent only one	ogical	
		failed	UGI endoscopy (four	treatment	
		endoscopy	days) compared to	or blood	
		or surgical	patients requiring >1	transfusio	
		hemostasis	endoscopy (eight days),	n that is	
		following	IRH (nine days) or	administer	
		failed	surgery (15	ed is	
		endoscopy	days), <i>p</i> < 0.0001. The	unknown.	
		of	median hospital costs	Finally, the	

	I	T		c	1 . 1	
			gastroduod	were significantly lower	database	
			enal ulcer	for patients who	also	
			bleeding. A	underwent one UGI	precludes	
			secondary	endoscopy (\$10,518)	propensity	
			analysis was	compared to patients	score	
			then	requiring >1 endoscopy	matching	
			conducted	(\$20,055), IRH (\$34,730)	or any	
			to analyze	or surgery	modeling	
			the	(\$47,589), <i>p</i> < 0.0001.	based on	
			demographi		patient	
			cs of the		comorbidit	
			hospitals in		ies.	
			which the			
			procedures			
			were			
			performed.			
			•			
Taina Nykänen, Erno	Retrosp	The study population	30-d	During the study period,	The study	Mortality and
Peltola, Leena Kylänpää &	ective	received treatment	mortality	bleeding gastric and	has all the	rebleeding rates did
Marianne	cohort	for BGDUs in Helsinki	and	duodenal ulcers	known	not differ between TAE
Udd (2017) Bleeding gastric	study	University Hospital	rebleeding	(BGDUs) lead to 1583	weaknesse	and surgery. With less
and duodenal ulcers: case-		(HUH) after failed	rates were	hospital admissions.	s of a	postoperative
control study comparing		endoscopic	the primary	TAE or surgery was	retrospecti	complications, TAE
angioembolization and		hemostasis during	outcomes.	necessary on 85 (5.4%)	ve study.	should be the
surgery, Scandinavian		2000–2015. Patients	Postoperati	patients, 43 receiving	As	preferred hemostatic
Journal of		requiring additional	ve	surgery and 42 TAE. Out	randomiza	method when
Gastroenterology, 52:5, 523		hemostatic	complicatio	of 42, 16 received	tion did	endoscopy fails.
-		interventions (TAE or	ns, blood	prophylactic TAE. Two	not occur,	
530, DOI: <u>10.1080/0036552</u>		surgery) for high-risk	transfusion	underwent angiography	selection	
<u>1.2017.1288756</u>		ulcers (Forrest Ia-	rate, and	and TAE to localize the	bias is	
		IIb), independent of	the	bleeding. The remaining	evident,	
		ulcer etiology,	durations of	24 received TAE for	patients	

		comprised the study	intensive	active or recurrent	with active	
		group.	care and	bleeding after	bleeding	
		group.	hospital	endoscopy. The	dominatin	
			admissions	comparison of TAE	g in	
			were the	(n = 24) and surgery	surgical	
			secondary	(n = 43) included only	group.	
			outcomes.	patients with active or	group.	
			outcomes.	· ·		
				recurrent bleeding.		
				Mortality rate was		
				12.5% after TAE and		
				25.6% after surgery		
				(<i>p</i> = 0.347). Rebleeding		
				rate was 25% after TAE		
				and 16.3% after surgery		
				(p = 0.641).		
				Postprocedural		
				complications were less		
				frequent after TAE than		
				surgery (37.5 vs.		
				67.4%, p = 0.018). Other		
				secondary outcomes		
				did not differ. Out of 85		
				procedures, 14 (16.5%)		
				took place between		
				midnight and 8 a.m., all		
				nighttime interventions		
				being surgeries.		
Yen, Hsu-Heng, Yang, Chia-	Retrosp	From January to	Successful	In 5 patients hemostasis	First, this	In this study, we have
Wei, Su, Pei-Yuan, Su, Wei-	ective	October 2010, four	hemostasis	was achieved with	study only	demonstrated that
Wen, and Soon, Maw-Soan.	study	hundred twenty-	or need for	hemostatic forceps as a	included	hemostatic forceps can
"Use of Hemostatic Forceps		seven patients	surgery	rescue therapy after	limited	be a useful alternative

as a Preoperative Rescue	underwent	standard endoscopic	cases and	method for controlling
Therapy for Bleeding Peptic	endoscopic therapy	therapy had failed. In 4	was	peptic ulcer bleeding
Ulcers." Surgical	for bleeding peptic	patients successful	retrospecti	after failure of
Laparoscopy, Endoscopy &	ulcers.	hemostasis was	ve in	conventional
Percutaneous Techniques		achieved, whereas 1	nature.	endoscopic
21.5 (2011): 380-82. Web.		patient had to undergo	We are	techniques. Patients
	A retrospective	emergency surgery.	unable to	may benefit from this
	analysis of the		provide	new technique.
	endoscopy database		firm	Further prospective
	identified 5 patients		evidence	and large-scale studies
	who had received		to show	are required to confirm
	endoscopic therapy		the	our observations.
	with hemostatic		advantage	
	forceps (Coagrasper:		of	
	FD-410LR; Olympus)		hemostati	
	during this period.		c forceps	
			over other	
			conventio	
			nal	
			endoscopi	
			С	
			techniques	
			•	
			Second,	
			the use of	
			hemostati	
			c forceps is	
			easier in	
			the case of	
			ESD	

			, ,
			because
			the vessels
			are easier
			to identify
			and
			coagulate
			during the
			procedure.
			In a
			situation
			with
			bleeding
			peptic
			ulcers,
			there is no
			standard
			recommen
			dation for
			the use of
			this
			device.
			The
			bleeding
			vessels are
			less easily
			caught by
			the
			forceps in
			bleeding
			peptic
			ulcers, and
			in some
L	l l	T	

		cases we
		need to
		coagulate
		the vessel
		with
		forceps
		closed.
		While
		dealing
		with
		monopolar
		coagulatio
		n with hot
		biopsy
		forceps, th
		e
		endoscopi
		st should
		be aware
		of the
		necessity
		to avoid
		excessive
		coagulatio
		n, which
		might lead
		to delayed
		perforatio
		n.
		Third, the
	1	•

		,	
			cost of
			hemostati
			c forceps is
			relatively
			high
			compared
			with other
			endoscopi
			С
			hemostati
			С
			devices. Th
			is may
			limit their
			use as a
			first line
			endoscopi
			c
			therapeuti
			c
			technique.
			'

Study Ref.	Study type	Patient group	Key outcomes	Key results	Limitation	Conclusion
Valizadeh Toosi SM, et al.	Single center,	178 patients with	comparing the	There were not significant	The	This study
Comparison of Oral	prospective, randomized	active upper gastrointestinal	rate of re- bleeding or	statistical differences between the two groups	endoscopies had been	showed no statistically
versus Intravenous Proton Pump Inhibitors in	trial	bleeding due to a peptic ulcer with	mortality, and the need for	in the volume of	performed by six	significant difference
Preventing Re-bleeding from Peptic		stigmata	blood transfusion or	blood transfusion, mean duration of hospital stay,	gastroenterolo gists. This	between the two groups

Ulcer after Successful	of high risk for re-	surgery during	need to surgery, or	might have	of IV or oral
Endoscopic Therapy. Middle	bleeding entered the	the first month	mortality rates. However,	interfered	PPI in the
East J Dig Dis. 2018	study		the rates of re-bleeding	with the same	outcomes of
Oct;10(4):236-241	Received either high dose oral pantoprazole (80 mg stat and 80 mg twice daily for 3 days) or high dose intravenous pantoprazole (80 mg IV infusion within 30 minutes and 8 mg per hour for 3 days)		were 2.3% (2:88) in the IV group and 3.3% (3:90) in the oral group (p = 0.6)	interpretation of the ulcers	high risk peptic ulcers after therapeutic endoscopy. Therefore, it seems that high dose oral PPI can be a good alternative to high dose IV PPI in ptients with bleeding peptic ulcer disease. Furthermore , due to the lower cost (approximat ely 30 times) and availability of oral PPI, its use can be economically
					much more

						affordable
Sgourakis G, et al. High-dose	meta-analysis	a total of 1.651	Primary	Here were significantly	- There was a	low-dose PPI
vs. Low-dose	and meta-	participants allocated	outcomes were	less cases of rebleeding in	noteworthy	is equally
Proton Pump Inhibitors	regression	to high dose PPI	rebleeding	the low-dose PPI	discrepancy in	effective as a
post-endoscopic hemostasis	analysis . 10	versus low dose	rates, need for	treatment arm (p=0.003).	the definition	high- dose
in patients with bleeding	RCTs	(range 20-160mg PPI	surgical	All but one study provided	of rebleeding	PPI
in patients with steeding	concerning	per day)	intervention,	data concerning need for	- Different	administratio
peptic ulcer. A meta-analysis	low- versus		and mortality.	Surgical Intervention and	dosing of High	n following
and meta-regression	high-dose PPI			Mortality. The respective	dose and low	endoscopic
analysis. Turk J	administration			effect sizes were [odds	dose PPI	bleeding
Gastroenterol.	post-			ratio (OR), 95%	between	arrest in
2018 Jan;29(1):22-31	endoscopic			confidence intervals (CI):	studies	bleeding
2010 3011,23(1).22 31	hemostasis			1.35, 0.72-2.53] and [OR,		peptic ulcer
	published until			95% CI: 1.20, 0.70-2.05].		patients
	December			Both treatment arms		
	2016 were			were comparable		
	identified.			considering the		
				aforementioned		
				outcomes (p=0.35 and		
				p=0.51, respectively).		
				Meta-regression analysis		
				likewise unveiled		
				comparable outcomes		
				between studies using		
				pantoprazole versus		
				lansoprazole concerning		
				all three outcomes		
				[rebleeding (p=0.944),		
				surgical inter- vention		
				(p=0.884), and mortality		

				(p=0.961)].		
Tringali A, et al. Comparing intravenous and oral proton pump inhibitor therapy for bleeding peptic ulcers following endoscopic management: a systematic review and meta-analysis. Br J Clin Pharmacol. 2017 Aug;83(8):1619-1635	Systematic review and meta-anlaysis. Search conducted Feb 2016. 9 RCTs were included	1036 subjects were allocated to receive oral PPIs (n = 518) or IV PPIs (n = 518).	recurrent bleeding, blood transfusion requirement, duration of hospital stay, a need for repeat endoscopy, surgery and 30- day mortality	No differences in the rebleeding rates [odds ratio (OR) 0.93, 95% confidence interval (CI) 0.60, 1.46; P = 0.77], need for surgery (OR 0.77, 95% CI 0.25, 2.40; P = 0.65), need for repeat endoscopy (OR 0.69, 95% CI 0.39, 1.21; P = 0.19), need for blood transfusion [(MD) –0.03, 95% CI –0.26, 0.19; P = 0.76], duration of hospital stay (MD –0.61, 95% CI – 1.45, 0.23; P = 0.16) or 30-day mortality (OR 0.89, 95% CI 0.27, 2.43; P = 0.84) according to the route of administration. subgroup analysis showed that high-dose IV PPIs were equivalent to low-dose IV PPIs for all outcomes considered. A subgroup analysis comparing a high-dose IV PPI demonstrated no statistically significance	-diferent regimens of dosing the PPIs between the groups - included some low-risk patients with Forrest classification IIc or III. These patients may have a lower risk of recurrent bleeding, which could explain the comparable efficacy of oral and IV PPIs Fifty per cent of the trials included in the meta-analysis were at a high risk of performance and detection	oral and IV PPIs have a similar efficacy after endoscopic treatment in controlling recurrent bleeding, the requirement for surgery and mortality in patients with peptic ulcer bleeding from dif- ferent stigmata.

				difference for any of the outcomes considered, except for the need for a blood transfusion, which favoured the high- dose oral PPI.	bias. Furthermore, the sample size in some of the RCTs included was too small, resulting in studies that were underpowered to demonstrate a statisti- cally significant difference between the two groups (oral vs. IV), leading to	
					-	
					-	
					_	
					unreliable	
					conclusions	
					which would	
					have limited	
					the strength of	
					the meta-	
					analysis	
Chwiesko A, et al. Effects of	Randomized	50 patients with	The intragastric	The median percentage of	- unclear	In patients
different omeprazole dosing	controlled trial	NVUGIB were	pH was	time at an intragastric pH	clinical	with
on gastric pH in non-variceal		prospectively	recorded for 72	> 4.0 was higher in the IV		NVUGIB,

upper gastrointestinal bleeding: A randomized		enrolled, after achievement of	hours	infusion group than in the IV bolus group over 48	relevance	OME IV bolus
prospective study. J Dig Dis. 2016 Sep;17(9):588-599	Non-inferiority	endoscopic hemostasis, were randomized to 40-mg IV OME bolus injection bid or 80- mg IV bolus injection + 8-mg/h continuous IV infusion for 72 hours Forty-one Caucasians (n = 18 for IV infusion group; n = 23 for IV bolus group) were analysed	Dahlaadingusts	hours (100% vs. 96.6%, respectively; P = 0.009) and 72 hours (100% vs. 87.6%, respectively; P = 0.006), and that at an intragastric pH > 6.0 was higher in the IV infusion group compared to the IV bolus group over 72 hours (97.9% vs. 63.5%, P = 0.04).		followed by continuous infusion was more effective than OME IV bolus bid in maintaining higher intragastric pH, regardless of CYP2C19 genetic polymorphis ms. H. pylori infection accelerated the initial elevation of intragastric pH. High-dose
Chiu PW, Joeng HK, Choi CL,	randomized	305 patients	Rebleeding rate within 30 days	A total of 153 patients were randomized to the		•
Tsoi KK, Kwong KH, Lam SH,	controlled trial	included. One group (second-look	after initial	PPI infusion group and		omeprazole infusion was
Sung JJ. High-dose	controlled trial	'		_ ,		
omeprazole infusion		endoscopy group)	hemostasis. The	152 to the second- look		not inferior
compared with scheduled		received the proton	margin for	endoscopy group.		to scheduled
,		pump inhibitor (PPI)	noninferiority	Rebleeding occurred		second-look

second-look endoscopy for	omeprazole as an	was set at 5 %.	within 30 days in 10	endoscopy in
prevention of peptic ulcer	intra-venous bolus		patients (6.5 %) in the PPI	the
rebleeding: a randomized	every 12 hours for 72		in- fusion group and in 12	prevention
controlled trial. Endoscopy.	hours and a second		patients (7.9 %) in the sec-	of ulcer
2016	endoscopy within 16		ond-look endoscopy	rebleeding.
A	– 24 hours with re-		group (P = 0.646). Surgery	High-dose
Aug;48(8):717-22	treatment for		was required for	omeprazole
	persistent stigmata		rebleeding in six patients	infusion is
	of bleeding. The		from the PPI infusion	the
	other group (PPI		group and three patients	preferred
	infusion group)		in the second-look	postendosco
	received continuous		endoscopy group (P =	ру
	high-dose		0.32). Intensive care unit	management
	omeprazole infusion		stay, transfusion	strategy to
	for 72 hours.		requirements, and	avoid
			mortality were not	unnecessary
			different between the	endoscopic
			groups. Patients in the	surveil- lance
			second-look endoscopy	and
			group were discharged 1	discomfort
			day earlier than those in	for the
			the PPI infusion group (P <	patient.
			0.001).	Scheduled
				second-look
				endoscopy
				demonstrate
				d an
				advantage by
				leading to
				earlier
				discharge
				from hospital

Lu Y, et al. Timing or Dosing of Intravenous Proton Pump Inhibitors in Acute Upper Gastrointestinal Bleeding Has Low Impact on Costs. Am J Gastroenterol. 2016 Oct;111(10):1389-1398	Cost- effectiveness analysis		For each, continuous or intermittent dosing regimens were assessed with associated incremental costs. Deterministic and probabilistic sensitivity analyses were performed.		Furthermore, indirect costs related to the administration of PPI (i.e., equipment and nursing time) were not included, which may have differed for continuous vs. intermittent dosing;	after confirmation of secured hemostasis, and may be considered for selective patients at high risk of re- bleeding and mortality. The incremental costs of using different IV PPI regimens are modest compared with total per patient costs.
Rodriguez E.A., Donath E., Waljee A.K., Sussman D.A. Value of oral proton pump	systematic review and network meta-	Overall, 7767 patients were included, with the	Risk of rebleeding, length of stay	No difference was observed between IV PPI drip and scheduled IV PPI	- were unable to perform subgroup	Scheduled IV PPIs were as effective as
inhibitors in acute,		mean number of	(LOS), surgery	for mortality (relative	analyses	IV PPI drip

nonvariceal upper gastrointestinal bleeding: A network meta-analysis. Journal of Clinical Gastroenterology. 51 (8) (pp 707-719), 2017	analysis A total of 39 studies using IV PPI drip, IV scheduled PPI, oral PPI, H2- receptor antagonists, and placebo	patients per study 193	(ROS), mortality, and total units of blood transfused (UBT)	risk=1.11; 95% credibility interval, 0.56-2.21), LOS (0.04, -0.49 to 0.44), ROS (1.27, 0.64-2.35) and risk of rebleeding within 72 hours, 1 week, and 1 month [(0.98, 0.48-1.95), (0.59, 0.13-2.03), (0.82, 0.28-2.16)]. Oral PPIs were as effective as IV scheduled PPIs and IV PPI drip for LOS (0.22, -0.61 to 0.79 and 0.16, -0.56 to 0.80) and UBT (-0.25, -1.23 to 0.65 and -0.06, -0.71 to 0.65) and superior to IV PPI drip for ROS (0.30, 0.10 to 0.78).	accounting for the high-risk features of the lesions or the interventions performed at endoscopy - The included studies also used a variety of weight-based or standard PPI dosage, making it a challenge to draw a conclusion as to the appropriate dosage of PPI to prevent the evaluated endpoints.	for most outcomes. Oral PPIs were comparable to scheduled IV for LOS and UBT and superior to IV PPI drip for ROS. Conclusions should be tempered by low frequency endpoints such as ROS, but question the need for IV PPI drip in ANVGIB
Jiang M, Chen P, Gao Q. Systematic Review and Net- Work Meta-Analysis of Upper Gastrointestinal Hemor- rhage Interventions. Cell Physiol Biochem	Meta-analysis and systematic review. 47 articles included	9528 subjects	Rebleeding, mortality, need for surgery, hospital stay, blood transfusion		Did not perform any stratified analysis with respect to dose and administration	PPI is an effective medication for UGH patients and intravenous PPI exhibits

2016;39:2477- 91							route	equivalent
								effectivenes
								and safety in
								comparison
								to oral PPI.
								H2RA is not
								recommend
								d for UGH
								patients as
								patients
								treated with
								H2RA are
								associated
								with an
								increased
								risk of
								adverse
								events
								including
								rebleeding,
								need for
								surgery and
								all-cause
								mortality.
Study Ref.	Study type	Patient group	<u> </u>	Key outcom	es	Key results	Limitation	Conclusion
Staark Lin CV Oloson II at	Danish	ACO2 nationts	ui+b	Risks of all c	21150	Compared with	Not limited	Among nations
Staerk L, Lip GY, Olesen JB, et al. Stroke and recurrent		4602 patients watrial fibrillation			ause	Compared with	to PUB	Among patients with atrial
haemorrhage associated with	retrospective cohort study	discharged fron		mortality,		non-resumption of treatment, a	IU PUB	fibrillation who
antithrombotic treatment after	Conort Study	uisciiai geu iron	11	thromboem	bolism,	reduced risk of	Main	IIDHIIIAUUH WNO
gastrointestinal bleeding in		hospital after		major bleed	ing, and	all cause	outcomes	experience
patients with atrial fibrillation:		gastrointestina	l			mortality was	analysed	gastrointestinal
patients with atrial horillation.				<u> </u>		mortanty was		

nationwide cohort study. BMJ.	bleeding while	recurrent	found in	after a 90	bleeding while
2015;351:h5876. Published	receiving	gastraintastinal	association with	days of	receiving
2015 Nov 16.	antithrombotic	gastrointestinal	association with restart of oral	blanking	antithrombotic
doi:10.1136/bmj.h5876	treatment.	bleeding were estimated with	anticoagulation	period	treatment;
Format:	treatment.	estimated with	anticoagulation	after	subsequent
Tomat.	Restarted	competing risks	(HR 0.39, 95% CI	hospital	restart of
	treatment	models and time	0.34	discharge	Testart or
	regimens were	dependent multiple	to 0.46), an		oral
	single or combined	Cox regression	antiplatelet		anticoagulation
	antithrombotic	models.	agent (0.76, 0.68		alone was
		in oue is:	to 0.86),		associated with
	drugs with oral		,.		better outcomes
	anticoagulation and		and oral		for all cause
	antiplatelets.		anticoagulation		mortality and
	Follow-up started		plus an		
	90 days after		antiplatelet		thromboembolis
	discharge to avoid		agent (0.41, 0.32		m compared with patients
	confounding from		to 0.52), and a		who did
	confounding from use of previously		reduced risk of		Wilo did
	prescribed drugs		thromboemboli		not resume
	prescribed drugs		sm was found in		treatment. This
	on discharge.		association with		was despite an
					increased
			restart of oral		longitudinal
			anticoagulation		associated risk
			(0.41, 0.31 to		of bleeding
			0.54),		
			an antiplatelet		
			agent (0.76, 0.61		
			to 0.95), and		

				anticoagulation plus an antiplatelet agent (0.54, 0.36 to 0.82). Restarting oral anticoagulation alone was the only regimen with an increased risk of major bleeding (1.37, 1.06 to 1.77) compared with nonresumption of treatment;		
Witt DM, Delate T, Garcia DA, et al. Risk of thromboembolism, recurrent hemorrhage, and death after warfarin therapy interruption for gastrointestinal tract bleeding. <i>Arch Intern Med</i> . 2012;172(19):1484–1491.	Retrospective cohort stduy	Administrative and clinical databases, patients experiencing GIB during warfarin therapy were categorized according to	Incidence of thrombosis, recurrent GIB, and death, as well as the time to resumption of anticoagulant therapy, during the 90 days following a	442 patients with warfarin- associated index GIB included in the analyses. 260 patients (58.8%) resumed	not all factors that affect clinical decision making could be collected.	he decision to not resume warfarin therapy in the 90 days following a GIB event is associated with increased risk

12.4261	resumed warfarin	GIB event.	warfarin	Underesti	and death. For
	therapy after GIB		therapy.	mation of	many patients
Format:	and followed up for		Warfarin	warafarin	who have
	90 days.		therapy	effect on	experienced
			resumption	TE and GIB,	warfarin-
			after the index	Not PUB	associated GIB,
			GIB was		the benefits of
			associated with		resuming
			a lower adjusted		anticoagulant
			risk for		therapy will
			thrombosis		outweigh the
			(hazard ratio		risks
			[HR], 0.05; 95%		
			CI, 0.01-0.58)		
			and death (HR,		
			0.31; 95% CI,		
			0.15-0.62),		
			without		
			significantly		
			increasing the		
			risk for		
			recurrent GIB		
			(HR, 1.32; 95%		
			CI, 0.50-3.57).		
			Median (IQR)		
			time to		
			resumption of		
			warfarin was 4		
			days (2-9 days).		
			, ,		

Study Ref.	Study type	Patient group	Key outcomes	Key results	Limitation	Conclusion
Sung JJ, et al. Asia-Pacific working group consensus on non-variceal upper gastrointestinal bleeding: an update 2018 Gut 2018. PMID 29691276	Clinical Guideline	NA Patients with NVUGIB.	- PPI effect - Antiplatelet and anticoagulant effects - rebleeding - need for surgery - mortality - need for intervention	Statement 14: Among direct oral anticoagulant (DOAC) or warfarin users with high cardiothromboti c risk who develop ulcer bleeding, DOAC or warfarin should be resumed as soon as haemostasis is Established. Statement 13: In patients receiving dual antiplatelet agents, at least one antiplatelet agent should be resumed in	NA	NA

Sostres C, Marcén B, Laredo V, et al. Risk of rebleeding, vascular events and death after gastrointestinal bleeding in anticoagulant and/or antiplatelet users. <i>Aliment Pharmacol Ther</i> . 2019;50(8):919–929.	Retrospective cohort analysis	871 patients with GIB (25% PUB) taking antithombotic drugs 52.5% used an antiplatelet ;93.1% interrupted treatment after	Rebleeding, vascular events and death.	cases of upper gastrointestinal bleeding Resumption of therapy was associated with a higher risk of rebleeding (HR 2.184; 95% CI: 1.357-3.515)	Retrospecti ve analysis Mixed patients for all types of bleeding	Resumption of anticoagulant or antiplatelet therapy after a gastrointestinal bleeding event was associated
doi:10.1111/apt.15441		GIB. and 80.5% restarted therapy. Median follow-up was 24.9 months (IQR: 7.0-38.0).		but a lower risk of an ischaemic event (HR 0.626; 95% CI: 0.432-0.906) or death (HR 0.606; 0.453-0.804) in a multivariable COX hazards proportional models		with a lower risk of vascular events and death and a higher rebleeding risk. The benefits of early reinstitution of anticoagulant/a ntiplatelet therapy outweigh the gastrointestinal-related risks.

Study Ref.	Study type	Patient group	Key outcomes	Key results	Limitation	Conclusion
Qureshi W, Mittal C, Patsias I, et al. Restarting anticoagulation and outcomes after major gastrointestinal bleeding in atrial fibrillation [published correction appears in Am J Cardiol. 2015 Jul 1;116(1):166]. Am J Cardiol. 2014;113(4):662–668.	Retrospective cohort stduy	Patients who developed major GIB while taking warfarin Henry Ford Health System with a large catchment area serving all socioeconomic strata, covering majority of Southeast Michigan, United States.	Time-to-event adjusted analyses were performed to find an association of restarting warfarin and recurrent GIB, arterial thromboembolism, and mortality.	1,329 patients developed major GIB. Warfarin was restarted in 653 cases (49.1%). Restarting warfarin was associated with decreased thromboembolism (HR 0.71, 95% CI; 0.54 to 0.93, p [0.01) and reduced mortality (HR 0.67, 95% CI 0.56 to 0.81, p <0.0001) but not recurrent GIB (HR 1.18, 95% CI 0.94 to 1.10, p[0.47). When the outcomes were stratified by duration of warfarin interruption, restarting	Based on claims No able to enunciate all the factors that affect the clinical decision making Detection bias survivorship bias	Decision to restart warfarin after an episode of major GIB is associated with improved survival and decreased thromboembolism without increased risk of GIB after 7 days of interruption.

	warfarin after 7	
	days was not	
	associated with	
	increased risk of	
	GIB but was	
	associated with	
	decreased risk of	
	mortality and	
	thromboembolism	
	compared with	
	resuming after 30	
	days of	
	interruption.	

Study Ref.	Study type	Patient group	Key outcomes	Key results	Limitation	Conclusion
Ray WA, Chung CP,	retrospective	97,430 patients	hospitalizations	The risk of	Potential	Overall PPI co-
Murray KT, Smalley	cohort study	beginning	for upper	hospitalizations	misclassification of	therapy was
WE, Daugherty JR,		warfarin	gastrointestinal	due to upper GIB	ASA, NSAID and	associated with
Dupont WD, et al.		treatment in	bleeding	decreased by 24%	PPI use.	reduced risk of
Association of		Tennessee Medicaid and	potentially preventable by	among patients who received PPI		warfarin-related
proton pump inhibitors with		the 5% National	PPIs and for	co-therapy (HR,		upper gastrointestinal
reduced risk of		Medicare	bleeding at other	0.76; 95% CI, 0.63-		bleeding; the
warfarin-related		Sample with	sites.	0.91). There was		greatest reduction
warrariii-relateu		75,720 person-		no significant		greatest reduction

serious upper	years of follow-	reduction in the	occurred in
tusintostinal	up.	risk of other	patients also
gastrointestinal		gastrointestinal	taking antiplatelet
bleeding.		bleeding	drugs or
Gastroenterology.		hospitalizations	NSAIDs.The ffect
2016;151:1105-12		(HR, 1.07; 0.94-	was not seen in
e10.		1.22) or non-	patients with
		gastrointestinal	NSAID or
		bleeding	antiplatelet use.
		hospitalizations	
		(HR, 0.98; 0.84-	
		1.15) in this group.	
		Among patients	
		concurrently using	
		antiplatelet drugs	
		or NSAIDs, the risk	
		decreased by 45%	
		(HR, 0.55; 95% CI,	
		0.39-0.77) with PPI	
		co-therapy. PPI co-	
		therapy had no	
		significant	
		protective effect	
		for warfarin	
		patients not using	
		antiplatelet drugs	
		or NSAIDs (HR,	
		0.86; 95% CI, 0.70-	
		1.06). Findings	
		were similar in	
		both study	

				populations.		
Chan EW, Lau WC, Leung WK, Mok MT, He Y, Tong TS, et al. Prevention of dabigatran-related gastrointestinal bleeding with gastroprotective agents: A population based study.	Retrospective cohort stduy	population-wide database managed by the Hong Kong Hospital Authority. Patients newly prescribed dabigatran (5041 patients) from 2010 through 2013	Risk of GIB in dabigatran users by incidence rate ratio (IRR), adjusted for patient characteristics, comorbidities, and concurrent medications.	populations. The risk of GIB in this population increased among patients 75 years and older (IRR, 2.47; 95% CI, 1.66–3.68), patients with a history of peptic ulcers or GIB (IRR, 2.31; 95% CI, 1.54–3.46), and patients	Potential residual confounding No comparator group or control	The use of gastroprotective agents was associated with a reduced risk of GIB in patients taking dabigatran. The association was stronger for upper GIB than lower GIB, and in
based study. Gastroenterology. 2015;149:586-95 e3.				3.46), and patients who used aspirin (IRR, 1.52; 95% CI, 1.03–2.24). Concomitant use of gastroprotective agents was associated with a reduced risk of GIB, but it was significant for only		lower GIB, and in patients with a prior history of peptic ulcers or GIB.
				upper GIB (IRR, 0.29; 95% CI, 0.15– 0.54), and only for patients with a prior history of peptic ulcers or		

		GIB (IRR, 0.14; 95% CI, 0.06– 0.30).	

Study Ref.	Study type	Patient group	Key outcomes	Key results	Limitation	Conclusion
Kido K, Scalese MJ. Management of Oral Anticoagulation Therapy After Gastrointestinal Bleeding: Whether to, When to, and How to Restart an Anticoagulation	Systematic review	Articles referring to patients with GIB taking anticoagulants	To evaluate current clinical evidence for management of oral anticoagulation therapy after	9 studies were identified. Four retrospective cohort studies showed that resuming anticoagulation	Heterogeneou s studies and conclusions based on very few studies	Anticoagulation therapy resumption is recommended, with resumption being considered
Therapy. Ann Pharmacother. 2017 Nov;51(11):1000-1007			gastrointestinal bleeding (GIB) with an emphasis on whether to, when to, and how to resume an anticoagulation therapy.	therapy was associated with significantly lower rate of thromboembolis m (TE). Meta- analyses and prospective cohort studies also supported this finding. Two retrospective cohort studies indicated an increase in GIB when anti-		between 7 and 14 days following GIB regardless of the therapy chosen.

				coagulation reinitiation occurred in less than 7 days without a decrease in TE. Resuming therapy between 7 and 15 days did not demonstrate a significant increase in GIB or TE. A large retrospective study showed that apixaban was associated with the significantly lowest risk of GIB compared with both rivaroxaban and dabigatran.		
Moayyedi P, et al <u>Pantoprazole</u> to <u>Prevent Gastroduodenal</u> Events in <u>Patients Receiving</u> Diversivable and (or Assizin in a	3 × 2 partial factorial double- blind trial	17,598 participants with stable	The primary outcome was time to first	There was no significant difference in	Significance was achieved in post-hoc	In a randomized placebo-controlled trial, we found that
Rivaroxaban and/or Aspirin in a Randomized, Double-Blind,	טוווט נוומו	cardiovascular disease and	upper gastrointestinal	upper gastrointestinal	comparison but not for the	routine use of

Placebo-Controlled Trial. Gastroenterology. 2019 Aug;157(2):403-412 Hernandez I, Zhang Y, Brooks	Retrospectiv	peripheral artery disease. Participants were randomly assigned to groups given pantoprazole 40 mg daily or placebo, as well as rivaroxaban 2.5 mg twice daily with aspirin 100 mg once daily, rivaroxaban 5 mg twice daily, or aspirin 100 mg alone.	event, defined as a composite of overt bleeding, upper gastrointestinal bleeding from a gastroduodenal lesion or of unknown origin, occult bleeding, symptomatic gastroduodenal ulcer or ≥5 erosions, upper gastrointestinal obstruction, or perforation.	events between the pantoprazole group and the placebo group (hazard ratio, 0.88; 95%Cl, 0.67-1.15). Pantoprazole significantly reduced bleeding of gastroduodenal lesions (HR 0.52; 95% confidence interval, 0.28-0.94; P = .03); when a post-hoc definition of bleeding gastroduodenal lesion was used (HR 0.45; 95% confidence interval, 0.27-0.74), athe NNT was 982; 95% Cl, 609-2528).	primary outcome. The number of bleeding upper GI events was still small.	proton pump inhibitors in patients receiving low-dose anticoagulation and/or aspirin for stable cardiovascular disease does not reduce upper gastrointestinal events, but may reduce bleeding from gastroduodenal lesions.
MM, et al. Anticoagulation use	e cohort	Medicare Part D	anticoagulation	anticoagulation	about the INR,	associated with

posthemorrhage use of anticoagulation. anticoag
whose

Sengupta N, Marshall AL, Jones BA, Ham S, Tapper EB. Rebleeding vs Thromboembolism After Hospitalization for Gastrointestinal Bleeding in Patients on Direct Oral Anticoagulants. <i>Clin Gastroenterol Hepatol</i> . 2018;16(12):1893–1900.e2. doi:10.1016/j.cgh.2018.05.005	Retrospectiv e cohort study	Medical claims data from the Truven Health Marketscan Commercial Claims and Encounters Database, from January 1, 2010, through December 31, 2014. 1338 adults treated with DOACs and hospitalized for GIB (dabigatran, n = 679;	Frequency at which patients resume DOAC therapy following hospitalization for GIB in a real-world setting, and the risks and benefits.	ceased (HR 1.56; 95% CI 1.10—2.22), but did not differ between patients restarting dabigatran and those discontinuing anticoagulation (HR 0.65; 95% CI 0.32—1.33). Higher proportions of patients who did not resume DOAC had heart failure, received blood, and required intensive care. Restarting DOAC therapy within 30 days was not associated with thromboembolis m within 90 days (HR, 0.98; 95% CI, 0.37—2.21) or	They may not have captured all follow-up rebleeding and thromboembol ic events, or outpatient adverse outcomes It does not capture outpatient mortality Events They did not	Resuming DOAC therapy was not associated with thromboembolis m within 90 days or recurrence of GIB; a history of venous thromboembolis m and thienopyridine use were associated with a risk of subsequent thromboembolis m and GIB
---	-----------------------------------	---	--	--	---	--

		608, apixaban, n = 51).		(HR, 1.44; 95% CI 0.72–2.68).). A higher proportion of patients who resumed treatment with rivaroxaban, compared with other DOACs, had recurrence of GIB. The median time to refilling a claim for DOAC after GIB was 40 days (IQR, 17–88 d)	search claims for warfarin after index discharge, some patients were switched from DOAC to warfarin, and consequently were categorized as not having a DOAC resumed	respectively.
Sengupta N, Feuerstein JD, Patwardhan VR, et al. The risks of thromboembolism vs. recurrent gastrointestinal bleeding after interruption of systemic anticoagulation in hospitalized inpatients with gastrointestinal bleeding: a prospective study [published correction appears in Am J	Propsective cohort study	197 Patients admitted to the hospital who had GIB while on systemic anticoagulation.	Safety and risk of continuation of anticoagulation after GIB	Anticoagulation continuation was independently associated on multivariate regression with a lower risk of major thrombotic	Residual confounding by indication There is also a significant amount of heterogeneity in the cohort. Survival bias	Restarting anticoagulation at discharge after GIB was associated with fewer thromboembolic events without a significantly increased risk of

Gastroenterol. 2015		episodes within	may have	recurrent GIB at
Mar;110(3):480]. <i>Am J</i>		90 days (hazard	affected the	90 days. The
Gastroenterol. 2015;110(2):328-		ratio (HR)=0.121,	primary	benefits of
335. doi:10.1038/ajg.2014.398		95% CI =0.006-	outcome.	continuing
Formati		0.812, P=0.03).	Patients lost to	anticoagulation
Format:		Patients with		at discharge may
		any malignancy	follow-up	outweigh the
		at time of GIB		risks of recurrent
		had an increased		GIB.
		risk of		
		thromboembolis		
		m in follow-up		
		(HR=6.1, 95%		
		CI=1.18-28.3,		
		P=0.03).		
		Anticoagulation		
		continuation at		
		discharge was		
		not significantly		
		associated with		
		an increased risk		
		of recurrent GIB		
		at 90 days		
		(HR=2.17, 95%		
		CI=0.861-6.67,		
		P=0.10) or death		
		within 90 days		
		(HR=0.632, 95%		
		CI=0.216-1.89,		
		P=0.40)		

Chai-Adisaksopha C, Hillis C,	Systematic	patients with	Risk of	Three studies	Few studies in	This meta-
Monreal M, Witt DM, Crowther	review of	atrial fibrillation	thromboembolis	were included in	the meta-	analysis
M. Thromboembolic events,	phase III	or venous	m, recurrent GI	the meta-	analysis.	demonstrates
recurrent bleeding and mortality	randomised	thromboembolis	bleeding and	analysis. The		that resumption
after resuming anticoagulant	controlled	m who received	mortality for	resumption of	Heterogeneity	of warfarin
following gastrointestinal	trials and	oral	patients on long-	warfarin was	of patients and	following
bleeding. A meta-analysis.	cohort	anticoagulant.	term	associated with	intervention.	interruption due
Thromb Haemost.	studies		anticoagulation	a significant	Serious risk of	to GI bleeding is
2015;114(4):819–825.			who experience	reduction in	bias	associated with
doi:10.1160/TH15-01-0063			GI bleeding	thromboembolic		a reduction in
			based on	events (HR 0.68,		thromboembolic
			whether	95% CI 0.52 -		events and
			anticoagulation	0.88, p<0.004,		mortality
			therapy was	I(²)=82%). There		without a
			resumed.	was a not		statistically
				statistically		
				significant		
				increase in		
				recurrent GI		
				bleeding in		
				patients who		
				restarted		
				warfarin		
				compared to		
				those who did		
				not (HR 1.20,		
				95% CI 0.97 to		
				1.48).		
				Resumption of		
				warfarin was		
				associated with		
				significant		

Little D, Chai-Adisaksopha C, Hillis C, et al. Resumption of anticoagulant therapy after anticoagulant-related gastrointestinal bleeding: A systematic review and meta- analysis. <i>Thromb Res</i> . 2019;175:102–109. doi:10.1016/j.thromres.2019.01. 020	Systematic review and meta-analysis	EMBASE, MEDLINE, and the Cochrane Central Register of Controlled Trials for new references from January 2014 to September 2017. Randomized controlled trials and observational studies involving adults with OAC- related GI bleeding were included.	Risks of recurrent GI bleeding, thromboembolis m, and death in patients who resumed OAC compared to those who did not.	reduction in mortality (HR 0.76, 95% CI 0.66 to 0.88). 12 observational studies involving 3098 patients. There was an increased risk of recurrent GI bleeding (RR 1.91, 95% CI 1.47-2.48, and a reduced risk of thromboembolism (RR 0.30, 95% CI 0.13-0.68,) and death (RR 0.51, 95% CI 0.38-0.70, I² = 71.8%, 8 studies) in patients who resumed OAC compared to those who did not.	11 of 12 studies were judged to be at serious risk of bias due to confounding	Resuming OAC after OAC-related GI bleeding appears to be associated with an increase in recurrent GI bleeding, but a reduction in thromboembolis m and death.
---	-------------------------------------	--	--	---	--	---

Majeed A, Wallvik N, Eriksson J,	Risk	Data on the	'total risk', based	121 (58 %) of	Modelling risk	The optimal
et al. Optimal timing of vitamin K	Modelling	bleeding	on the sum of	207 patients	analysis based	timing of VKA
antagonist resumption after	Analysis	location, timing	the cumulative	with VKA-	on very few	resumption after
upper gastrointestinal bleeding.		of VKA	rates of	associated upper	cases	VKA-associated
A risk modelling analysis. Thromb		resumption,	recurrent GI	GI bleeding were		upper GI
Haemost. 2017;117(3):491–499.		recurrent GI	bleeding and	restarted on		bleeding
doi:10.1160/TH16-07-0498		bleeding and	thromboembolic	anticoagulation		appears to be
		thromboembolic	events,	after a median		between 3-6
		events were	depending on	(interquartile		weeks after the
		collected from a	the timing of VKA	range) of one		index bleeding
		cohort of	resumption	(0.2-3.4) week		event but has to
		patients with		after the index		take into
		upper GIB taking		bleeding.		account the
		Vit K		Restarting VKAs		degree of
		anticoagulants		was associated		thromboembolic
				with a reduced		risk, patient
				risk of		values and
				thromboembolis		preferences
				m (HR 0.19; 95 %		
				CI, 0.07-0.55)		
				and death (HR		
				0.61; 95 % CI,		
				0.39-0.94), but		
				with an		
				increased risk of		
				recurrent GI		
				bleeding (HR		
				2.5; 95 % CI, 1.4-		
				4.5). The		
				composite risk		
				obtained from		
				the combined		

statistical model	
of recurrent GI	
bleeding, and	
thromboembolis	
m decreased if	
VKAs were	
resumed after	
three weeks and	
reached a nadir	
at six weeks	
after the index	
GI bleeding.	

First author, year, ref	Study design, participants (n)	Intervention/ Exposure	Outcome	Remarks
Ford, 2016 [4]	MA (34 RCTs, 3,910)	ET+UHD vs. UHD for DU healing	12.4% vs 18.7% ulcer persistence, RR 0.66; 95% CI 0.58-0.76	ET+UHD superior to DU healing (low quality evidence)

	MA (2 RCTs, 207)	ET vs. NT for DU healing	21.7% vs. 58.5% ulcer persistence, RR 0.37; 95% CI 0.26-0.53	ET superior to NT for DU healing (low quality evidence)
	MA (15 RCTs, 1,974)	ET+UHD vs. UHD for GU healing	16.0% vs. 13.0% ulcer persistence, RR 1.23; 95% CI 0.90-1.68	Imprecise differences (very low quality evidence)
	MA (4 RCTs, 319)	ET vs. UHD for DU recurrence prevention	11.9% vs. 16.3% ulcer recurrence, RR 0.73; 95% CI 0.42-1.25	Imprecise differences (very low quality evidence)
First author, year, ref	Study design, participants (n)	Intervention/ Exposure	Outcome	Remarks

Ford, 2016 [4]	MA (27 RCTs, 2,509)	ET vs. NT for DU recurrence prevention	12.9% vs. 64.4% ulcer recurrence, RR 0.20; 95% CI 0.15-0.26	ET superior to NT for DU recurrence prevention (very low quality evidence)
	MA (12 RCTs, 1,476)	ET vs. NT for GU recurrence prevention	16.3% vs. 52.4% ulcer recurrence, RR 0.31; 95% CI 0.22-0.45	ET superior to NT for GU recurrence prevention (very low quality evidence)
Chang, 2015 [5]	R (1,920)	ET initiation within >120 vs. ≤ 120 days after PUB diagnosis	HR 1.52; 95% CI 1.13-2.04; p= 0.006	ET better initiated within 120 days of PUB diagnosis
Hung, 2019 [6]	R (830)	Hp testing in acute NVUGIH (within first 60 days) vs. no testing	ICU hospitalization: OR, 0.42; 95% CI, 0.27-0.66. Rebleeding and mortality in first	Hp testing better in acute setting of NVUGIH

			year: 22% vs. 47%, p<0.01; HR, 0.49; 95% CI, 0.36-0.67	
First author, year, ref	Study design, participants (n)	Intervention/ Exposure	Outcome	Remarks
Sverdén, 2018 [7]	R (29,032)	ET initiation within 8-30, 31- 60, 61-365, >365 days vs. 7 days after PUB diagnosis	Ulcer recurrence HRs: 1.17 (95% CI, 1.08-1.25), 2.37 (95% CI, 2.16- 2.59), 2.96 (95% CI, 2.76-3.16) and 3.55 (95% CI, 3.33-3.79) Complicated ulcer HRs: 1.55 (95% CI, 1.35-1.78), 3.19 (95% CI, 2.69- 3.78), 4.00 (95% CI, 3.51-4.55) and 6.14, (95% CI, 5.47-6.89)	ET better initiated within 7 days of PUB diagnosis